

PLAN DIRECTOR DE LA RED NATURA 2000 DE CASTILLA-LA MANCHA

ANEXO VI CONECTIVIDAD ECOLÓGICA EN LA RED NATURA 2000 DE CASTILLA-LA MANCHA

ÍNDICE

		/IDAD ECOLOGICA DEL TERRITORIO Y RED NATURA 2000: DIAGNO ACTUAL DE CONOCIMIENTO	
2.	CONECTIV	/IDAD ECOLÓGICA ENTRE HÁBITATS FORESTALES	2
	2.1. Zonas i Mancha 3	núcleo consideradas por el estudio en el ámbito geográfico de Castili	LA-LA
		CACIÓN DE CORREDORES PRIORITARIOS	1
		ERÍSTICAS GENERALES DE LOS CONECTORES	
4			
	2.4.1. 2.4.2.	Corredor del Sistema Central	
	2.4.2. 2.4.3.	Corredor del Sistema Ibérico Corredor de las Sierras Béticas	
	2.4.3. 2.4.4.	Corredor de Sierra Morena – Montes de Toledo	
	2.4.4. 2.4.5.	Corredor de La Mancha	
	_	S CRÍTICOS SOBRE LOS QUE ACTUAR	
•	2.5. FONTOS 2.5.1.	Características generales de las zonas críticas	
	2.5.1. 2.5.2.	Identificación de zonas prioritarias de actuación en relación con las zona	
		DE CONECTIVIDAD	
		TIVIDAD EN HÁBITATS FORESTALES ENTRE ESPACIOS REGIONALES Y EL RESTO DE L	-
		es Autónomas	
		TIVIDAD EN ECOSISTEMAS FORESTALES: RECOMENDACIONES DE GESTIÓN EN LA R	
3.	CONECTIV	/IDAD ECOLÓGICA EN ESPACIOS FLUVIALES	14
3	3.1. ESPACIO	OS FLUVIALES DE LA RED NATURA 2000 REGIONAL	15
3	3.2. EVALUA	CIÓN DE LA CALIDAD DE LAS AGUAS	15
		CIÓN DEL ESTADO DE CONSERVACIÓN DE LAS RIBERAS	
		CIÓN DEL ESTADO DE CONSERVACIÓN DE LA FAUNA PISCÍCOLA POR DEMARCACIO	
		CAS	
	3.4.1.	Demarcación Hidrográfica del Tajo	
	3.4.2.	Demarcación Hidrográfica del Guadiana	
	3.4.3.	Demarcación Hidrográfica del Segura	
	3.4.4.	Demarcación Hidrográfica del Júcar	
	3.4.5.	Demarcación Hidrográfica del Guadalquivir	21
3	3.5. Análisi	S DE ALTERACIONES HIDROMORFOLÓGICA	22
	3.5.1.	Conclusiones	24
3	3.6. SITUACI	ÓN ACTUAL DE LA CONECTIVIDAD FLUVIAL	25
3	3.7. R ECOM	ENDACIONES DE GESTIÓN PARA LA MEJORA DE LA CONECTIVIDAD FLUVIAL	27
4.	CONECTIV	/IDAD ECOLÓGICA EN LOS HUMEDALES	29
4	1.1. HUMED	ALES DE CASTILLA-LA MANCHA	29
4	1.2. EVALUA	ición de la conectividad ecológica de los humedales de Castilla-La M <i>a</i>	чисна30
4	1.3. R ECOM	ENDACIONES DE GESTIÓN PARA LA MEJORA DE LA CONECTIVIDAD DE LOS HUMED	ALES DE
(Castilla-La I	Mancha	33
5.	CONECTIV	/IDAD ECOLÓGICA EN ECOSISTEMAS AGRARIOS	34
į	5.1. ESPACIO	OS DE LA RED NATURA 2000 VINCULADOS A LA CONSERVACIÓN DE LAS AVES ESTI	EPARIAS
1	ASOCIADAS A	ECOSISTEMAS AGROESTEPARIOS	35
į	5.2. EVALUA	ción de la conectividad ecológica agroesteparia en Castilla-La Manc	на35
	5.2.1.	Idoneidad del hábitat	36
	5.2.2.	Matriz de resistencia y corredores identificados	37

5.2.3.	Modelo de conectividad	. 39
5.2.4.	Nodos de conectividad	. 40
5.2.5.	Factores que afectan a la pérdida de hábitat	. 40
5.3. PRINCIP	IOS DE CONSERVACIÓN Y MEJORA DE LA CONECTIVIDAD EN ECOSISTEMAS AGRARIOS .	.41
5.4. DIRECTI	RICES Y RECOMENDACIONES PARA LA MEJORA DE LA CONECTIVIDAD EN ECOSISTEMAS	
AGRARIOS DE	CASTILLA-LA MANCHA	.41
6. BIBLIOGR	AFÍA	43
7. ANFXO CA	ARTOGRÁFICO	44

1. CONECTIVIDAD ECOLÓGICA DEL TERRITORIO Y RED NATURA 2000: DIAGNÓTICO DEL ESTADO ACTUAL DE CONOCIMIENTO

El estudio de la conectividad ecológica del medio requiere el abordaje de una serie de análisis específicos, convenientemente desarrollados desde el punto de vista metodológico y de planificación, que caractericen la matriz territorial regional teniendo en cuenta las necesidades de los distintos grupos faunísticos y de vegetación que se desarrollan en el ámbito regional, atendiendo a las características actuales del mismo, pero, a la vez, contemplando el parámetro de la necesaria adaptación al fenómeno del cambio climático. Se trata de un estudio vasto y complejo, que debe sentar las bases del conocimiento sobre el que coordinar otros instrumentos de planificación como la Estrategia Estatal para la Infraestructura Verde, la Conectividad y la Restauración Ecológicas.

Dada la relevancia de este análisis como base para el desarrollo de las correspondientes estrategias de gestión y conservación del medio, vinculadas estrechamente al logro de los objetivos planteados por la Unión Europea en cuanto a su Estrategia Europea para la Conservación de la Biodiversidad hasta 2020, y su visión para 2050, este anexo pretende realizar una evaluación preliminar del estado de la cuestión en Castilla-La Mancha, como punto de partida desde el que plantear los estudios necesarios que completen, actualicen y desarrollen los trabajos que en los últimos años se han venido realizando sobre esta materia en la región.

La información actualmente disponible sobre la que comenzar a plantear un análisis estructurado de la conectividad ecológica (funcional y estructural) se basa principalmente en el trabajo de ámbito nacional (incluyendo zonas limítrofes de Francia y el área de Portugal) presentado en 2018 por WWF/Adena en el que se realiza una propuesta de Red Estratégica de Corredores Ecológicos orientado a especies y hábitats de ámbito forestal. Este trabajo pone de manifiesto la necesidad de ampliar este análisis al ámbito agrario y al medio acuático, aún pendientes de abordar. No obstante, dada la importancia del grupo de aves vinculadas a los ambientes esteparios, se ha llevado a cabo una aproximación preliminar al análisis del medio en cuanto a su idoneidad como hábitat para estas especies (estudio inédito realizado por la Dirección General con competencias en la gestión del medio natural de la JCCM y con conclusiones aún muy preliminares).

En cuanto a la conectividad del medio para las especies vinculadas al medio acuático epicontinental (fluvial y humedales), no existen en la actualidad estudios que lo hayan caracterizado en este sentido.

En base a estas consideraciones previas, se presenta el estado actual de la cuestión para los ambientes forestal, acuático y agrario a nivel regional y un análisis de los avances realizados.

2. CONECTIVIDAD ECOLÓGICA ENTRE HÁBITATS FORESTALES

La conectividad en hábitats forestales en Castilla-La Mancha ha sido analizada en el trabajo "Propuesta para una Red Estratégica de Corredores Ecológicos entre espacios Red Natura 2000" elaborado por WWF/Adena (2018).

Este trabajo ha llevado a cabo la aplicación de un conjunto de métodos de análisis de la conectividad a tres tipologías diferentes de hábitats forestales (bosque denso maduro, bosque claro y matorral), y aborda la identificación de una red de corredores prioritarios que conectan los espacios forestales de la Red Natura 2000 en España, diferenciándolos según sean prioritarios para la conservación o la restauración, e identificando los tramos con condiciones críticas para la conectividad.

El planteamiento de la propuesta se basa en la capacidad de los corredores ecológicos para constituir enlaces funcionales entre dos o más zonas núcleo, que discurren por las zonas que suponen una menor dificultad para el movimiento de las especies. Así, para su caracterización se ha partido de la identificación, por un lado, de unas zonas núcleo constituidas por los espacios de la Red Natura 2000, y que constituyen las áreas cuya conectividad se pretende garantizar, y por otro, una superficie de resistencia que refleja la dificultad de las especies para moverse por zonas con características muy diferentes a las de su hábitat idóneo (Zeller et al, 2012).

El estudio, realizado a escala nacional y considerando las conexiones trasfronterizas, se centra en la superficie forestal (bosque denso, bosque claro y matorral). Esta superficie en España supone el 55 % del territorio y los espacios seleccionados por el estudio representan más del 90 % de la superficie total de Red Natura 2000 española (WWF/Adena, 2018).

Como base cartográfica para determinar la abundancia y distribución espacial de estos hábitats en los espacios de la Red Natura 2000 se ha empleado el Mapa Forestal de España (1:50.000).

En cuanto a la parametrización de la superficie de resistencia se ha empleado la base cartográfica del SIOSE (1:25.000), considerando la resistencia al movimiento tanto en la matriz territorial que separa los espacios Red Natura 2000 como dentro de los espacios.

Los resultados del estudio han proporcionado información geográfica con base cuantitativa acerca de:

- Los conectores entre los puntos centrales de los espacios, incluyendo los patrones de conectividad dentro de esos espacios en función de sus condiciones de heterogeneidad interna.
- b. La identificación de la anchura de las franjas conectoras que se extienden a ambos lados de los ejes conectores, lo que se traduce en la caracterización de los entornos paisajísticos en cuanto a su idoneidad para permitir el movimiento de las especies.
- c. La definición de los conectores prioritarios en tres escenarios distintos:
 - Conservación: conectores cuya degradación o pérdida se traduciría en una mayor disminución de los niveles de conectividad que actualmente presenta la Red Natura 2000.

- Restauración: conectores cuya mejora a condiciones óptimas de permeabilidad revertiría en un incremento de la conectividad de la red.
- Restauración normalizada por el esfuerzo requerido: relación entre el incremento de conectividad propiciado por la restauración de un determinado corredor y el coste estimado que se requeriría para ello.
- d. Cuellos de botella: tramos en los que la funcionalidad conectora está más comprometida y es más vulnerable frente a pequeñas modificaciones adicionales de las cubiertas y usos del suelo. Su vulnerabilidad queda determinada por la menor anchura de las franjas conectoras con suficiente permeabilidad, y a su ubicación dentro de conectores prioritarios.

2.1.Zonas núcleo consideradas por el estudio en el ámbito geográfico de Castilla-La Mancha

Del total de espacios que integran la Red Natura 2000 regional y en base a la premisa de presentar los hábitats objeto del estudio, se han considerado un total de 58 espacios, lo que supone el 71 % del total de la Red Natura 2000 regional.

Del análisis de la conectividad ecológica entre espacios se desprende que 54 (93 %) se encuentran unidos por alguno de los conectores identificados, quedando sólo fuera de esta red de conectividad 4 de ellos.

Los espacios contemplados en el análisis son:

- Alcornocal de Zumajo.
- Alto Tajo.
- Barrancas de Talavera.
- Barranco del Dulce.
- Bonales de la comarca de Los Montes del Guadiana.
- Cerros volcánicos de Cañamares.
- Estepas salinas de Toledo.
- Estepas yesosas de La Alcarria conquense.
- Hoces de Alarcón.
- Hoces del río Júcar.
- Hoz del río Gritos y páramos de Las Valeras.
- La Encantada, El Moral y Los Torreones.
- Laderas yesosas de Tendilla.
- Laguna de Los Ojos de Villaverde.
- Laguna del Arquillo.
- Lagunas de Ruidera.
- Lagunas volcánicas del Campo de Calatrava.
- Lagunas y parameras del Señorío de Molina.
- Mina de la nava de Ricomalillo.
- Montes de Picaza.
- Montes de Toledo.
- Parameras de Maranchón, hoz del Mesa y Aragoncillo.
- Quejigares de Barriopedro y Brihuega.
- Rañas de Matarrubia, Villaseca y Casas de Uceda.

- Rebollar de Navalpotro.
- Rentos de Orchova y vertientes del Turia.
- Riberas de Valfermoso de Tajuña y Brihuega.
- Riberas del Henares.
- Rincón del Torozo.
- Río Júcar sobre Alarcón.
- Río Tajo en Castrejón, islas de Malpica de Tajo y Azután.
- Ríos de la cuenca media del Guadiana y laderas vertientes.
- Rios de la margen izquierda del Tajo y berrocales del Tajo.
- Ríos Quejigal, Valdeazogues y Alcudia.
- Sabinares de Campillos Sierra y Valdemorillo de la Sierra.
- Sabinares rastreros de Alustante Tordesilos.
- Saladares de Cordovilla y Agramón y laguna de Alboraj.
- Serranía de Cuenca.
- Sierra de Abenuj.
- Sierra de Alcaraz y Segura y cañones del Segura y del Mundo.
- Sierra de Altomira.
- Sierra de Ayllón.
- Sierra de Caldereros.
- Sierra de Los Canalizos.
- Sierra de Pela.
- Sierra de Picón.
- Sierra de San Vicente y valles del Tiétar y Alberche.
- Sierra del Relumbrar y estribaciones de Alcaraz.
- Sierra del Santerón.
- Sierra Morena.
- Sierras de Almadén Chillón y Guadalmez.
- Sierras de Talayuelas y Aliaguilla.
- Sotos del río Alberche.
- Valle del río Cañamares.
- Valle del Tajuña en Torrecuadrada.
- Valle y salinas del Salado.
- Yesares del valle del Tajo.
- Hoces del Cabriel, Guadazaón y ojos de Moya.

Los espacios que no se encuentran conectados con ninguno de los corredores identificados son:

- Rañas de Matarrubia, Villaseca y Casas de Uceda.
- Río Tajo en Castrejón, Islas de Malpica de Tajo y Azután.
- Estepas yesosas de la Alcarria conquense.
- Laderas yesosas de Tendilla.

2.2. Clasificación de corredores prioritarios

El análisis de la información obtenida en relación a los corredores prioritarios identificados ha permitido distinguir las siguientes tipologías (De la Fuente *et al.*, 2018):

- a. Corredores prioritarios para la conservación: conectores cuyo deterioro es necesario evitar dado su buen estado de conservación.
- b. Corredores prioritarios para la restauración: conectores que, aun no teniendo un papel destacado en la conectividad entre núcleos, presentan una posición estratégica en el territorio, de forma que, si se mejora su funcionalidad se mejoraría sustancialmente la conectividad del conjunto de la red.
- c. Corredores que participan de ambas características.

Esta clasificación permite focalizar los recursos disponibles de la manera más eficiente posible, dado que no todos los corredores identificados contribuyen de la misma forma a mantener o mejorar la conectividad de la red.

Con carácter general, los **corredores ecológicos prioritarios** discurren principalmente por las márgenes de los ríos y a través de zonas de la Red Natura 2000 y no suelen localizarse en paisajes agrarios (dado el tipo de hábitat y especies consideradas en el estudio).

En cuanto a los **corredores prioritarios para su conservación**, tienden a concentrarse a lo largo de los principales macizos montañosos, aunque también existe un número significativo de conectores que atraviesan otro tipo de paisajes que permiten mantener conectadas importantes masas forestales.

En cuanto a los **corredores prioritarios para su restauración**, se distribuyen con mucha mayor frecuencia a través de la matriz territorial que separa los espacios forestales (paisajes agrícolas y baja cobertura forestal).

También se destaca la existencia de **zonas críticas** situadas estratégicamente en corredores prioritarios entre espacios de la Red Natura 2000 que actúan como cuellos de botella para la conectividad, al estar rodeadas de un medio con una elevada resistencia al desplazamiento de las especies y que, por lo tanto, requerirían de actuaciones urgentes en materia de conservación y restauración.

2.3. Características generales de los conectores

Como conclusiones y cuestiones a destacar en cuanto a los usos del suelo y del territorio en el estudio realizado, el estudio destaca los siguientes aspectos:

- a. La elevada heterogeneidad y complejidad de los patrones de conectividad entre los espacios de la Red Natura 2000, abarcando desde franjas de gran anchura hasta estrechos cuellos de botella.
- La heterogeneidad en cuanto a su contribución a la conectividad.
- c. La mayor contribución a la conectividad de las zonas cubiertas por la Red Natura 2000 que aquellas situadas fuera de la red.
- d. La concentración con mayor frecuencia de los conectores identificados a lo largo de los márgenes de los ríos, destacándose que en estos casos la prevalencia de vegetación de ribera y predominando los conectores que tienen necesidades de restauración sobre los de conservación.
- e. Los corredores prioritarios no suelen atravesar zonas agrícolas (fundamentalmente por los tipos de hábitats en los que se centra el estudio). Cuando ocurre esta coincidencia, destacan los que tienen necesidades de restauración sobre los de conservación.

- f. La localización de los corredores mejor conservados a lo largo de los principales macizos montañosos, mientras que los que presentan mayores necesidades de restauración atraviesan zonas de intenso uso agrícola y baja cobertura forestal.
- g. La necesidad de permeabilización de las amplias zonas de uso predominantemente agrícola con el fin de garantizar la conectividad a nivel regional.

2.4. Corredores prioritarios identificados en Castilla-La Mancha

En el ámbito de Castilla-La Mancha destacan cinco corredores estratégicos sobre los que se considera prioritario mantener o recuperar la conectividad según el trabajo de Autopistas Salvajes elaborado por WWF/Adena (2018).

Estos grandes corredores, constituidos por distinto número de conectores, no definen espacios concretos, sino áreas conceptuales que presentan las características compatibles con el mantenimiento de la conectividad espacial y funcional en base a los hábitats considerados.

Los corredores definidos son:

- 1. Corredor del Sistema Central.
- 2. Corredor del Sistema Ibérico.
- 3. Corredor de Sierra Morena Montes de Toledo.
- 4. Corredor de las Sierra Béticas.
- 5. Corredor de La Mancha.

Figura 1. Mapa de corredores ecológicos para hábitats forestales. Fuente: WWF (2018).

Cuatro de estas vías permiten la movilidad de las especies vinculadas a estos ecosistemas a través de un sistema de corredores que bordea el perímetro de la región, coincidiendo con los principales sistemas montañosos integrados por las unidades

geomorfológicas periféricas: Cordillera Central, el Sistema Ibérico, Cordilleras Béticas y Sierra Morena.

Un quinto corredor (Corredor de La Mancha) establece la comunicación transversal de este gran anillo periférico, atravesando las extensas llanuras interiores de la región.

2.4.1. Corredor del Sistema Central

Desde el punto de vista geográfico, este corredor conecta los componentes del Sistema Central castellanomanchego representados, en su extremo más occidental, por las estribaciones del macizo de Gredos en la Sierra de San Vicente (Toledo), con el extremo más oriental representado por la Sierra de Ayllón (Guadalajara), a través del Corredor del Sistema Central que discurre por la Comunidad de Madrid.

A partir de la Sierra de San Vicente, este corredor vincula el ámbito de Gredos con el sistema de sierras interiores que conforman los Montes de Toledo. En este vínculo son determinantes las sierras de la comarca de La Jara.

Los espacios de la Red Natura 2000 regional conectados por este corredor son:

- Barrancas de Talavera.
- Mina de la nava de Ricomalillo.
- Montes de Toledo.
- Rincón del Torozo.
- Ríos de la cuenca media del Guadiana y laderas vertientes.
- Ríos de la margen izquierda del Tajo y berrocales del Tajo.
- Sierra de Ayllón.
- Sierra de Pela.
- Sierra de San Vicente y valles del Tiétar y Alberche.
- Sotos del río Alberche.
- Valle y salinas del Salado.

2.4.2. Corredor del Sistema Ibérico

A través de la Sierra de Pela, el Sistema Central conecta hacia el este con la rama castellana del Sistema Ibérico, que arranca en los Altos de Barahona y llega hasta la serranía de Cuenca a través del Alto Tajo, las parameras de Molina y los Montes Universales. La red de corredores continúa hacia el Sur a través de las hoces del Cabriel y del Júcar, elementos que facilitan la conexión entre este corredor y el corredor de las Cordilleras Béticas.

Los espacios Natura 2000 incluidos en este corredor son:

- Alto Tajo.
- Barranco del Dulce.
- Cerros volcánicos de Cañamares.
- Hoces de Alarcón.
- Hoces del río Júcar.
- Hoz del río Gritos y páramos de Las Valeras.
- Lagunas y parameras del Señorío de Molina.
- Montes de Picaza.
- Parameras de Maranchón, hoz del Mesa y Aragoncillo.
- Quejigares de Barriopedro y Brihuega.

- Rebollar de Navalpotro.
- Rentos de Orchova y vertientes del Turia.
- Riberas de Valfermoso de Tajuña y Brihuega.
- Riberas del Henares.
- Río Júcar sobre Alarcón.
- Sabinares de Campillos Sierra y Valdemorillo de la Sierra.
- Sabinares rastreros de Alustante Tordesilos.
- Serranía de Cuenca.
- Sierra de Altomira.
- Sierra de Ayllón.
- Sierra de Caldereros.
- Sierra de Pela.
- Sierra del Santerón.
- Sierras de Talayuelas y Aliaguilla.
- Valle del río Cañamares.
- Valle del Tajuña en Torrecuadrada.
- Valle y salinas del Salado.
- Hoces del Cabriel, Guadazaón y ojos de Moya.

2.4.3. Corredor de las Sierras Béticas

El extremo norte del corredor de las Cordilleras Béticas entra por la provincia de Albacete al través de las cordilleras Prebéticas, y en concreto por las Sierras de Alcaraz, Calar del Mundo, y las Sierra de las Cabras y Taibilla, enlazando con el extremo sur del corredor del Sistema Ibérico a través de distintos corredores facilitados por la presencia de la disposición consecutiva de distintas las Sierras: de Hellín, Lacera, Oliva, Ontalafia, de en Medio, del Chortal, Peñalosa, Montesinos, Abenuj y Navajuelos principalmente.

Los lugares de la Red Natura 2000 conectados por este corredor son:

- Hoces del río Júcar.
- Laguna de Los Ojos de Villaverde.
- Laguna del Arquillo.
- Lagunas de Ruidera.
- Saladares de Cordovilla y Agramón y laguna de Alboraj.
- Sierra de Abenuj.
- Sierra de Alcaraz y Segura y cañones del Segura y del Mundo.
- Sierra del Relumbrar y estribaciones de Alcaraz.

2.4.4. Corredor de Sierra Morena – Montes de Toledo

Desde los Montes de Toledo, y en dirección sur, parte el Corredor de Sierra Morena – Montes de Toledo. Esta vía enlaza ambos puntos geográficos a través de las Sierras de Almadén, Chillón y Guadalmez, continuando por las Sierras de Alcudia, Sierra Madrona, las estribaciones de Sierra Morena y finalmente la Sierra del Relumbrar, para contactar con la Sierra de Alcaraz.

Los espacios de la Red Natura 2000 que integran este corredor son:

- Alcornocal de Zumajo.
- Bonales de la comarca de Los Montes del Guadiana.

- La Encantada, El Moral y Los Torreones.
- Lagunas de Ruidera.
- Lagunas volcánicas del Campo de Calatrava.
- Montes de Toledo.
- Ríos de la cuenca media del Guadiana y laderas vertientes.
- Ríos Quejigal, Valdeazogues y Alcudia.
- Sierra de Los Canalizos.
- Sierra de Picón.
- Sierra Morena.
- Sierras de Almadén Chillón y Guadalmez.

2.4.5. Corredor de La Mancha

Este corredor atraviesa las amplias extensiones del interior de la región claramente definidas con un uso del suelo de tipo agrícola y caracterizado por la escasa presencia de hábitats forestales de bosque o matorral.

Los conectores identificados vinculan distintos sectores del corredor del Sistema Central con los Montes de Toledo, la Sierra del Relumbrar y las estribaciones de Alcaraz, y su importancia radica precisamente en esta potencialidad conectora entre puntos meridanamente opuestos en la red perimetral de corredores, por lo que resulta interesante analizar con detalle los distintos nodos de conectividad que se generan en sus extremos meridionales.

Desde el punto de vista geográfico, coincidirían con las fosas del Tajo y del Guadiana, y más concretamente con las áreas de valle del Tajo a su paso por la provincia de Toledo, y con las grandes llanuras interiores de la Región: La Mancha, Campos de Calatrava y Montiel y las llanuras de la provincia de Albacete.

La relación de espacios Natura 2000 que forman parte de este corredor es la siguiente:

- Estepas salinas de Toledo.
- Hoces de Alarcón.
- Hoz del río Gritos y páramos de Las Valeras.
- La Encantada, El Moral y Los Torreones.
- Laguna de Los Ojos de Villaverde.
- Laguna del Arquillo.
- Lagunas de Ruidera.
- Montes de Toledo.
- Río Júcar sobre Alarcón.
- Sierra de Alcaraz y Segura y cañones del Segura y del Mundo.
- Sierra de Altomira.
- Yesares del valle del Tajo.

2.5. Puntos críticos sobre los que actuar

En estos corredores se han detectado una serie de zonas críticas (tanto para la conservación como de restauración) sobre los que actuar para mantener el flujo de biodiversidad.

Estas zonas críticas son tramos de los corredores prioritarios que mantienen solo una estrecha franja con condiciones favorables para la conectividad y que transitan a través de un entorno inmediato considerablemente hostil y degradado con alta resistencia.

El análisis llevado a cabo distingue, con relación a cada uno de los conectores, y para cada uno de los tipos de hábitats, entre zonas críticas para su conservación, restauración o de restauración con normalización de esfuerzo. Esta clasificación posibilita identificar necesidades específicas que permitan precisar actuaciones en función de las particularidades de cada tramo.

A continuación, se contextualiza la presencia de estos puntos para cada corredor prioritario en el ámbito regional, sin entrar en el análisis específico de la tipología de cada "cuello de botella" identificado:

Zonas críticas en el corredor del Sistema Central (Guadarrama – Alberche – Tiétar). Se identifican núcleos de zonas críticas de conservación o restauración en este sistema de conectores en las siguientes áreas o sectores:

Sector sur. Asociadas principalmente a los conectores localizados en la comarca de La Jara, fundamentales para establecer el vínculo con el área de Montes de Toledo, así como sobre los conectores que discurren por el río Alberche hasta el embalse de Cazalegas y su intersección con los de la comarca de la Jara.

En menor número también se localizan en tramos más dispersos de los conectores localizados al sur de la Sierra de San Vicente.

Espacios Natura 2000 afectados: Sierra de San Vicente, Ríos de la margen izquierda del Tajo y Berrocales del Tajo, Barrancas de Talavera y, en mayor medida, el espacio "Sotos del río Alberche".

Sector norte. Las zonas críticas se localizan principalmente en conectores que establecen contacto con el nodo de enlace con el Sistema Ibérico. El único espacio Natura 2000 sobre el que afecta directamente una de estas zonas críticas es "Sierra de Ayllón".

Zonas críticas en el corredor del Sistema Ibérico (Almazán – Guadalajara). Se concentran fundamentalmente en los conectores del extremo norte que enlazan con las vías que forman parte del Sistema Central, afectando a los siguientes espacios Natura 2000: Sierra de Ayllón, Valle y Salinas del Salado, Valle del río Cañamares.

Zonas críticas en el corredor de las Sierras Béticas (Albacete – Almansa – Hellín). Se concentran a lo largo de los sectores intermedios de los conectores que vinculan la Sierra de Alcaraz con el extremo sur de los corredores del Sistema Ibérico, afectando en numerosos tramos a cada uno de estos cordones conectores y coincidiendo con el sistema de pequeñas sierras interiores de disposición paralela que constituyen las vías de conexión en cuestión. Los espacios Natura 2000 sobre los que inciden directamente estas zonas críticas son la Sierra de Abenuj y los saladares de Cordovilla y Agramón y la laguna de Alboraj.

Zonas críticas en el corredor de Montes de Toledo – Sierra Morena (Guadiana medio – Zújar). Los sectores críticos de este corredor se localizan principalmente en el entorno de las sierras de Guadalmez y Alcudia, afectando principalmente a los espacios Natura 2000 de las Sierras de Almadén, Chillón y Guadalmez y al sector más occidental de Sierra Morena.

Zonas críticas en el corredor de La Mancha (Tajo medio – alto / Mancha oriental). Los sectores críticos de este corredor, que presenta una morfología semicircular, se concentran en los ramales norte y sur de los corredores que forma parte de esta vía

En el **sector norte** (Tajo medio – alto) se distribuyen ampliamente a lo largo de las vías que establecen conexión entre la Sierra de Altomira y los yesares del valle del Tajo, siendo especialmente relevantes en el entorno de Aranjuez y la comarca Toledana de La Sagra.

En el **sector sur** (Mancha – Oriental), las zonas críticas se concentran en el tramo del río Júcar entre Alarcón y las proximidades de La Roda (Albacete), hasta las estribaciones de la Sierra de Alcaraz.

2.5.1. Características generales de las zonas críticas

De acuerdo con las conclusiones del estudio en cuanto a los cuellos de botella, se hace patente que estos se concentran con mayor frecuencia en aquellas zonas donde:

- a. La matriz territorial es más abierta y relativamente inhóspita.
- b. En zonas poco permeables para la fauna.
- c. Alejados de los principales núcleos forestales.
- d. Sobre conectores prioritarios para la restauración (tanto normalizada como sin normalizar), estrechos, que presentan frecuentes discontinuidades y con dificultades para el movimiento de la fauna a escasa distancia del eje central del conector.

2.5.2. Identificación de zonas prioritarias de actuación en relación con las zonas críticas

Atendiendo a la concurrencia en la aparición de cuellos de botella (por longitud o acumulación de tramos contiguos) y a la coincidencia de al menos dos de las combinaciones de los tres hábitats forestales y tres escenarios considerados, en Castilla-La Mancha se han identificado las siguientes zonas prioritarias de actuación:

- 1. Corredor de La Mancha: sector de La Mancha oriental y los tramos vinculados más próximamente al río Tajo.
- 2. Corredor de las Sierras Béticas: sector Albacete Almansa Hellín.
- 3. Corredor del Sistema Central: sectores vinculados a los ríos Alberche y Tiétar.
- 4. Corredor de Sierra Morena Montes de Toledo: en el sector Guadiana, determinadas zonas críticas vinculadas a los cauces de los Ríos Guadalmez y Alcudia (principalmente), si bien la mayor parte de la zona prioritaria identificada se encuentra fundamentalmente definida en la región extremeña.

2.6. Nodos de conectividad

Del análisis de las líneas que siguen los corredores descritos, se destaca la presencia de varios nodos donde confluyen distintas vías de conectividad, lo que los hace especialmente interesantes desde el punto de vista del establecimiento de las medidas oportunas de conservación o restauración.

Nodo de Montes de Toledo. Constituye el punto de confluencia de los corredores de La Mancha, Sistema Central y Montes de Toledo – Sierra Morena. Muestran especial

relevancia en este nodo las sierras que rodean los municipios de Retuerta del Bullaque y Navas de Estena (Ciudad Real):

- Sierras del Castañar, Los Yébenes y Guadalerzas por las que se incorpora el corredor de La Mancha.
- Sierras de Hiruela, de San Pablo y el Chorito, por las que se incorpora el corredor del Sistema Central.
- Sierras de Cigüeñelas y el Chorito, por las que se incorpora el Corredor de Montes de Toledo – Sierra Morena.

Por el ámbito geográfico del nodo, destaca la importancia del espacio Natura 2000 Montes de Toledo en cuanto la conectividad en la Red.

Nodo Sierras de Alcaraz – Relumbrar. La Sierras de Alcaraz y del Relumbrar conforman también un importante nodo de confluencia para los corredores de la Sierras Béticas, Montes de Toledo – Sierra Morena y La Mancha. Aquí contactan tres grandes áreas montañosas: las estribaciones más orientales de Sierra Morena, Las Sierras de Cazorla, Segura y Las Villas desde la provincia de Jaén y la Sierra de Alcaraz.

Los espacios Natura 2000 que integran este nodo son: Sierra del Relumbrar y estribaciones de Alcaraz, y Sierras de Alcaraz y Segura y cañones del Segura y del Mundo.

2.7. Conectividad en hábitats forestales entre espacios regionales y el resto de las Comunidades Autónomas

La posición geográfica de Castilla-La Mancha en el contexto peninsular y la disposición perimetral de las cordilleras que constituyen las vías principales sobre las que discurren la mayor parte de los conectores identificados hacen de esta región un interesante nodo de intersección para el resto de los conectores que discurren por la península.

Así, los extremos del corredor del Sistema Ibérico conectan hacia el sur con el corredor de las Sierras Litorales del Mediterráneo y hacia el norte con el corredor del Alto Ebro, corredores estos que, a su vez, establecen el vínculo de conectividad necesario para la movilidad de las especies con los corredores que discurren por las Cordilleras Cantábrica y Pirenaica: corredor del Cantábrico y corredor del Pirineo.

A su vez, los corredores del Sistema Central y Sierra Morena – Montes de Toledo en Castilla-La Mancha continúan por Extremadura conectando ambos con el corredor portugués, mientras que el corredor de Sierra Morena – Montes de Toledo continúa por Andalucía a través de los distintos conectores que configuran el corredor de las Sierras Béticas. Este último, en sus ramales que atraviesan la provincia de Albacete, establece contacto con el corredor de las Sierras Litorales del Mediterráneo en un importante nodo de conectividad localizado en torno a los espacios vinculados a los ríos Júcar y Cabriel en el límite administrativo entre las provincias de Cuenca, Albacete y la Comunidad Valenciana.

2.8. Conectividad en ecosistemas forestales: recomendaciones de gestión en la red de conectores

A partir de las conclusiones y del material de análisis proporcionado por el trabajo "Propuesta para una Red Estratégica de Corredores Ecológicos entre espacios Red Natura 2000" elaborado por WWF/Adena (2018), se configura una potente herramienta

que permite llevar a cabo análisis más detallados, por un lado, del papel que cada uno de los espacios de la Red Natura 2000 regional desempeña en la conectividad con otros espacios, sus debilidades y fortalezas como vínculo de unión en la Red, y el planteamiento de medidas dirigidas al mantenimiento o, en su caso, la mejora de esta función.

Por otro, y más allá del papel de cada uno de los espacios de la Red en particular, permite llevar a cabo el análisis preliminar del papel de la red territorial en la conectividad ecológica, fundamental para conseguir el objetivo principal de favorecer el flujo de materia y de energía entre los núcleos principales que constituyen los espacios protegidos.

Una vez definidas estas zonas y caracterizadas en función de su capacidad conectiva, es posible detectar factores o elementos cuya presencia puede favorecer esta capacidad conectora del territorio y otros que, sin embargo, pueden suponer una barrera o fragmentación que dificulte la conectividad efectiva.

El estudio propone una serie de recomendaciones en cuanto a la adopción de una serie de medidas de gestión que garanticen la funcionalidad ecológica de la red de conectores, y que se resumen a continuación:

- 1. En el caso de tramos de conectores que transcurren por zonas agrícolas, y en especial en los cuellos de botella, fomentar una mayor proporción de cultivos leñosos y apostar por prácticas agrícolas menos intensivas, dado que, fomentando aspectos como la heterogeneidad del mosaico constituido por la vegetación natural y los cultivos, se potencia uno de los aspectos que se han revelado como claves para la permeabilización del paisaje.
- 2. En la misma línea, se recomienda priorizar la reforestación en cultivos agrícolas abandonados o tierras de productividad marginal. Estas medidas deberán incidir en zonas con escasa superficie arbolada, evitando el fomento de una excesiva superficie arbolada en aquellas áreas que ya se presente una predominancia de esta superficie.
- 3. Fomentar la madurez y el desarrollo estructural de las masas forestales, priorizando la conservación de los bosques que en la actualidad ya presenten estas características.
- 4. Incorporar la función conectora de las masas arboladas en los instrumentos de planificación forestal existentes.
- 5. Priorizar la restauración de la vegetación de ribera en los tramos de conectores que transiten entorno a los ríos, buscando reforzar la anchura y la continuidad espacial de esta a lo largo de los márgenes de los ríos.
- 6. Incidir en la permeabilización de los tramos de conectores afectados por infraestructuras de transporte.
- 7. Fomentar la integración de las consideraciones relativas a la conectividad y la red de conectores identificados en la planificación territorial a todas las escalas, evitando así que las actuaciones de ámbito urbanístico afecten negativamente a la integridad de la red.
- 8. Llevar a cabo actuaciones de restauración sobre aquellos conectores que no alcancen la anchura mínima necesaria que se le presupone para mantener la funcionalidad conectiva que deben realizar (100 metros).

3. CONECTIVIDAD ECOLÓGICA EN ESPACIOS FLUVIALES

La red fluvial y sus riberas conforman un elemento fundamental en la estructuración del territorio, el paisaje y la conectividad ecológica. A pesar de esto, los ríos constituyen uno de los sistemas naturales más alterados por el hombre, presentando un importante número de barreras tanto longitudinales como transversales que afectan a todos los ámbitos del sistema natural.

En concreto, las alteraciones hidromorfológicas derivadas del establecimiento de barreras que impiden el movimiento y dispersión, tanto de especies, como de sedimentos, constituye el factor responsable del declive de muchas de las especies vinculadas a estos ambientes.

Este hecho es más grave si cabe en nuestro país, dado que los ríos españoles son los que cuentan con un mayor índice de fragmentación en Europa (Tockner et al, 2008).

Entre los factores que modifican los patrones naturales de conectividad funcional y estructural se encuentran las presas y azudes, pero también las canalización, derivaciones y regulaciones de caudal, así como las alteraciones hidrológicas condicionadas por las alteraciones en la cubierta vegetal, sin olvidar la contaminación de las aguas o la presencia de especies invasoras.

Por otro lado, no se debe obviar que el análisis de la conectividad fluvial no se puede restringir únicamente a la conectividad longitudinal. La vertiente lateral juega un papel igual de relevante en este análisis, al valorar el necesario margen de movilidad del río, y donde se tienen en cuenta zonas tradicionalmente muy transformadas por la actividad humana, al haber sido ocupadas por actividades vinculadas al sector agrario o urbanísticas.

El análisis de la conectividad fluvial requiere de la implementación de una metodología específica de análisis y el empleo de indicadores que estimen las variables tanto longitudinal como lateral. No obstante, a pesar del desarrollo de numerosos métodos para evaluar la integridad tanto hidromorfológica como estructural de ríos y riberas, actualmente muy pocos se centran en la conectividad longitudinal de los ríos, siendo escasos también los ejemplos que abordan la conectividad lateral. Resulta especialmente interesante el proyecto desarrollado para el diagnóstico de la coherencia y la conectividad de las masas de agua superficiales y subterráneas pertenecientes a la Red Natura 2000 en el ámbito de proyecto MedWetRivers en la cuenca del Duero (Iglesias *et al*, 2016), en el que se realiza un análisis de la conectividad longitudinal, lateral y vertical de las masas de agua de la cuenca empleando metodologías adaptadas a la información disponible y a las características del medio.

De este modo, abordar el estudio de la conectividad fluvial en Castilla-La Mancha es fundamental para mejorar el estado de conservación de aquellas especies vinculadas a los cauces fluviales, establecer medidas de conservación para aquellos tramos que mantengan una conectividad óptima e integrar estas propuestas en futuros proyectos de conservación de este medio que la pongan en valor como un recurso fundamental en el establecimiento de la infraestructura verde en Castilla-La Mancha.

No obstante, y a falta del trabajo previo necesario para abordar en detalle la caracterización de la conectividad ecológica entre los espacios fluviales que forman

parte de la Red Natura 2000 regional, se expone un análisis cualitativo de la conectividad fluvial a nivel regional basado en la caracterización de cuatro parámetros:

- 1. La calidad de las aguas de las distintas masas de agua superficiales.
- 2. El estado de conservación de las riberas.
- 3. El estado de conservación de la fauna piscícola.
- 4. El análisis de las barreras antrópicas.

3.1. Espacios fluviales de la Red Natura 2000 regional

Formando parte de la Red Natura 2000, en Castilla-La Mancha se encuentra designados los siguientes espacios de vocación principalmente fluvial:

- ES4240021: Riberas de Valfermoso de Tajuña y Brihuega.
- ES4240003: Riberas del Henares.
- ES4230016: Río Júcar sobre Alarcón.
- ES0000169: Río Tajo en Castrejón, e islas de Malpica de Tajo y Azután.
- ES4220003: Ríos de la cuenca media del Guadiana y laderas vertientes.
- ES4250013: Ríos de la margen izquierda del Tajo y berrocales del Tajo.
- ES4220007: Ríos Quejigal, Valdeazogues y Alcudia.
- ES4250014: Sotos del río Alberche.
- ES4240009: Valle del Río Cañamares.
- ES4240015: Valle del Tajuña en Torrecuadrada.
- ES0000165: Valle y salinas del salado.

3.2. Evaluación de la calidad de las aguas

La información relativa a la calidad de las masas de agua superficiales de las distintas Demarcaciones Hidrográfica, según los datos recogidos en el último informe reportado por la Comisión Europea sobre el seguimiento de los planes hidrológicos de segundo ciclo de planificación, se resumen en el Gráfico 1 y la Figura 2, en el que se identifica el porcentaje de longitud de las masas de agua superficiales de Castilla-La Mancha según su estado/potencial ecológico para cada una de las demarcaciones con presencia significativa en la región. Se observa que más de la mitad del territorio se encuentra en un estado/potencial ecológico peor que bueno (52,4 %), destacando las demarcaciones del Tajo (46,7 %), Júcar (47 %) y, especialmente, la del Guadiana (80, 9 %).

Estado/potencial ecológico

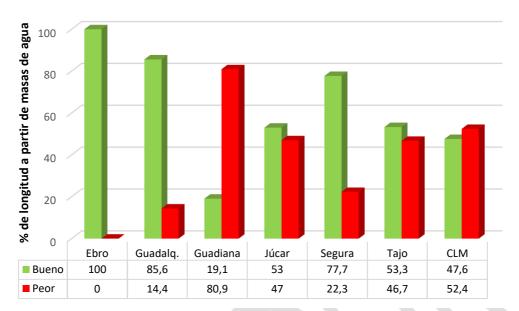


Gráfico 1. Porcentaje de longitud de las masas de agua superficiales de Castilla-La Mancha según su estado/potencial ecológico. Fuente: Planes hidrológicos 2022-2027.

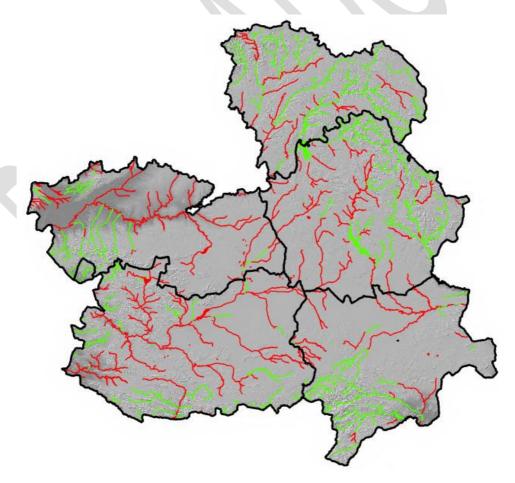


Figura 2. Localización de las masas de agua en cuanto estado de conservación/potencial ecológico. En rojo: estado peor que bueno. En verde: buen estado. Fuente: Planes hidrológicos 2022-2027.

3.3. Evaluación del estado de conservación de las riberas

Las riberas fluviales han sido consideradas desde el punto de vista de su papel en la conectividad, y en la definición de su importancia, como corredores ecológicos en el trabajo referido anteriormente para los ambientes forestales.

Los bosques de ribera intervienen conectando hábitats fragmentados, purificando el agua al retener sedimentos, nutrientes y algunos compuestos contaminantes, disminuyendo la temperatura al crear amplias zonas de sombra en los cauces y protegiendo frente a caudales extremos o avenidas (que serán cada vez más frecuentes en el futuro según los escenarios previstos en el contexto del cambio climático).

Las riberas fluviales conforman corredores biológicamente diferentes a su entorno debido a sus condiciones microclimáticas más húmedas, de manera que forman además refugios biogeográficos de gran valor, especialmente en territorios eminentemente secos como la península Ibérica.

La Red Natura 2000 otorga especial importancia a aquellos elementos del paisaje que determinan la permeabilidad y vertebración ecológica del territorio y, singularmente, aquellos que resulten importantes para la migración, distribución geográfica y el intercambio genético de las especies silvestres, entre los que se encuentran los elementos lineales continuos, como ríos y riberas. Por tanto, la creación de áreas continuas de bosques de ribera bien conservados puede constituir un corredor biológico que ayude a conectar otras zonas bien conservadas, constituyendo, además, una de las pocas acciones que se pueden emprender para mitigar los efectos del cambio climático en los sistemas fluviales. De hecho, el calentamiento progresivo del agua y la probable eutrofización pueden evitarse en parte si se mantienen las riberas fluviales en buen estado de conservación.

3.4. Evaluación del estado de conservación de la fauna piscícola por Demarcaciones Hidrográficas

La evaluación del estado de conservación de la fauna piscícola se resume a partir de los resultados presentados en el informe elaborado por la Universidad de Castilla-La Mancha (2015) sobre "La evaluación del estado de conocimiento y estado de conservación de las especies autóctonas de peces de Castilla-La Mancha" y cuyos objetivos específicos han sido:

- 1. Recabar, recopilar, ordenar y sistematizar la información existente sobre las especies nativas de peces de Castilla-La Mancha.
- 2. Evaluar el estado de conservación de las especies nativas de peces en base a su distribución y amplitud geográfica actual, evolución de la distribución y de la amplitud geográfica, población actual y su evolución, hábitat y las perspectivas futuras ante el cambio climático.
- 3. Formular directrices y propuestas concretas de cara a la gestión y la conservación de las especies de peces nativas de Castilla-La Mancha.

3.4.1. Demarcación Hidrográfica del Tajo

Se observa una severa fragmentación y regresión poblacional de un destacado número de peces autóctonos, siendo alarmante, por su grado de extensión e intensidad, la pérdida de distribución existente en el tramo medio de la cuenca, desde aproximadamente los embalses de Buendía-Entrepeñas y la desembocadura del río Alberche. La recuperación funcional de este tramo como corredor fluvial debe ser un objetivo prioritario para la conservación de la ictiofauna autóctona, donde al menos debe mejorarse notablemente la calidad de las aguas y garantizarse los caudales ecológicos de todas las masas de agua.

Los principales enclaves de conservación de la ictiofauna autóctona, salvo casos puntuales, se encuentran esencialmente en tramos de cabecera y ríos estacionales intermitentes de corto recorrido (varios ríos de la cuenca alta, ríos de la vertiente norte de los Montes de Toledo y río Tiétar).

El estado de conservación de todas las especies de peces autóctonos es desfavorable por la existencia de múltiples y relevantes impactos negativos sinérgicos, entre los que se encuentran la contaminación (difusa y local), la sobreexplotación y alteración del régimen hídrico natural (trasvases, canalizaciones, infraestructuras hidráulicas), la presencia de especies exóticas invasoras (especialmente ictiofauna alóctona y cangrejo rojo), la pérdida de conectividad fluvial, el deterioro de las formaciones vegetales acuáticas y riparias, la prevalencia de parásitos y enfermedades, la pesca recreativa y el cambio climático. Estos impactos limitan considerablemente la disponibilidad y calidad de hábitat a la vez que afectan directamente a las especies. Cuatro especies mantienen un estado de conservación desfavorable-inadecuado y diez desfavorable-malo. El mantenimiento de caudales ecológicos adaptados a las necesidades de las especies y sus hábitats, la reducción de la contaminación, el control o erradicación de las especies exóticas invasoras, el deslinde del dominio público hidráulico y la mejora de las características hidromorfológicas, ecológicas y de continuidad fluvial se establecen como los principales pilares para mejorar o revertir la situación desfavorable en la que se encuentra la ictiofauna autóctona en toda la demarcación.

Cabe resaltar como especie de conservación prioritaria, por su carácter endémico y elevado grado de amenaza, el bordallo del Gallo (*Squalius castellanus*). Así mismo, por la pérdida de amplitud geográfica y la tendencia general de su estado de conservación también deben considerarse prioritarias la lamprehuela (*Cobitis calderoni*), colmilleja (*Cobitis paludica*), trucha común (*Salmo trutta*) y el conjunto de ciprínidos de talla pequeña-media (bermejuela *Achondrostoma arcasii*, pardilla *Iberochondrostoma lemmingii*, boga del Tajo *Pseudochondrostoma polylepis*, cacho *Squalius pyrenaicus* y calandino *Squalius alburnoides*).

La Red de áreas protegidas de Castilla-La Mancha (Red Natura 2000 y ENPs) acoge una destacada superficie de tramos con elevada riqueza ictiológica en la demarcación hidrográfica del Tajo, como los afluentes de la margen izquierda (Huso, Gévalo, Sangrera, Pusa y Cedena), el río Tiétar y una buena proporción de la cuenca alta (Jarama, Dulce, Salado, Tajuña, Tajo, Ablanquejo, Arandilla, Gallo, Bullones, Guadiela, Escabas, etc.), aunque en la mayor parte de los casos existen tramos relevantes no incluidos en la Red que deberían ser incorporados dentro de alguna figura de protección (ENPs, Red Natura 2000 y reservas naturales fluviales de la demarcación hidrográfica).

3.4.2. Demarcación Hidrográfica del Guadiana

Se observa una fragmentación y regresión poblacional de un destacado número de peces autóctonos, siendo especialmente relevante las discontinuidades de distribución existentes en el tramo medio del alto Guadiana (junta de los ríos Gigüela-Záncara-Guadiana y territorios próximos) y tramo bajo del río Tirteafuera y su desembocadura en el Guadiana.

Los principales enclaves de conservación de la ictiofauna autóctona se encuentran esencialmente en tramos de cabecera y ríos intermitentes de corto recorrido (cabeceras del Gigüela, Záncara y Azuer-Cañamares; Lagunas de Ruidera y ríos de la vertiente sur de los Montes de Toledo y del cuadrante suroeste de Ciudad Real).

El estado de conservación de todas las especies de peces autóctonos es desfavorable por la existencia de múltiples y relevantes impactos negativos sinérgicos, entre los que se encuentran la contaminación (difusa y local), la sobreexplotación y alteración del régimen hídrico natural, la presencia de especies exóticas invasoras (especialmente ictiofauna alóctona y cangrejo rojo), la pérdida de conectividad fluvial por la existencia de obstáculos, el deterioro de las formaciones vegetales acuáticas y riparias, la prevalencia de parásitos y enfermedades, la pesca recreativa y el cambio climático. Estos impactos limitan considerablemente la disponibilidad y calidad de hábitat a la vez que afectan directamente a las especies. Cinco especies mantienen un estado de conservación desfavorable-inadecuado y nueve desfavorable-malo. El mantenimiento de caudales ecológicos adaptados a las necesidades de las especies y sus hábitats, la reducción de la contaminación, el control o erradicación de las especies exóticas invasoras, el deslinde del dominio público hidráulico y la mejora de las características hidromorfológicas, ecológicas y de continuidad fluvial se establecen como los principales pilares para mejorar o revertir la situación desfavorable en la que se encuentra la ictiofauna autóctona.

Cabe destacar como especies de conservación prioritaria en la demarcación hidrográfica del Guadiana-CLM, por su carácter endémico, grado de amenaza y tendencia general del estado de conservación, el jarabugo (*Anaecypris hispanica*) y el fraile (*Salaria fluviatilis*).

La Red de áreas protegidas de Castilla-La Mancha (Red Natura 2000 y ENPs) protege una destacada superficie de tramos con elevada riqueza ictiológica, como las Lagunas de Ruidera, los ríos de la vertiente S de los Montes de Toledo (Estena, Bullaque, Valdehornos y Esteras) y los ríos del Cuadrante SO de Ciudad Real (Alcudia, Guadalmez, Quejigal, Valdeazogues). Sin embargo, también existen tramos relevantes fuera de la red que deberían protegerse (ENPs, Red Natura 2000 y reservas fluviales de la demarcación hidrográfica) como los tramos del alto Gigüela, Záncara y Azuer y los ríos Guadalemar y Agudo, así como algunos enclaves no incluidos de los ríos anteriormente identificados.

3.4.3. Demarcación Hidrográfica del Segura

Se observa una fragmentación y regresión poblacional de todas las especies de peces autóctonos, siendo destacable la pérdida de riqueza existente en la cuenca del alto Segura, especialmente en su tramo medio, y en el arroyo Tobarra. La recuperación funcional del eje del río Segura como corredor fluvial debe ser un objetivo prioritario para la conservación y recuperación de la ictiofauna autóctona, debiendo garantizarse

en todos los casos adecuados caudales ecológicos, acordes con las variaciones estacionales del clima mediterráneo y, en su caso, una buena calidad de las aguas.

El principal enclave para la conservación de la ictiofauna autóctona se establece a lo largo del río Mundo, especialmente desde su cabecera hasta aproximadamente la desembocadura del arroyo de las Cañadas de Haches, donde están presentes las tres especies autóctonas.

El estado de conservación de todas las especies de peces autóctonos es desfavorable por la existencia de múltiples y relevantes impactos negativos sinérgicos, entre los que se encuentran la contaminación (difusa y local), la sobreexplotación y alteración del régimen hídrico natural (trasvases, canalizaciones, infraestructuras hidráulicas, inversión de los caudales estacionales naturales), la presencia de especies exóticas invasoras (especialmente ictiofauna alóctona), la pérdida de conectividad fluvial, el deterioro de las formaciones vegetales acuáticas y riparias, la prevalencia de parásitos y enfermedades, la pesca recreativa y el cambio climático. Estos impactos limitan considerablemente la disponibilidad y calidad de hábitat a la vez que afectan directamente a las especies. El barbo gitano mantiene un estado de conservación desfavorable-inadecuado y la trucha y el cacho desfavorable-malo. El mantenimiento de adecuados caudales ecológicos (adaptados a las necesidades de las especies, sus hábitats y la temporalidad natural del clima mediterráneo), la reducción de la contaminación, el control o erradicación de las especies exóticas invasoras, el deslinde del dominio público hidráulico y la mejora de las características hidromorfológicas, ecológicas y de continuidad fluvial se establecen como los principales pilares para mejorar o revertir la situación desfavorable de la ictiofauna autóctona.

Cabe resaltar la elevada presencia de peces alóctonos (especies autóctonas de otras cuencas de la Península Ibérica o exóticas de Centroeuropa y Norteamérica), siendo su introducción, en muchos casos, bastante reciente (inferior a 25 años). El mantenimiento y expansión de las especies foráneas, que actualmente cuadruplican en número a las autóctonas, se ve favorecida, entre otros aspectos, por una significativa alteración del régimen hídrico (existencia del trasvase Tajo-Segura y mantenimiento de elevados caudales circulantes durante el periodo estival). Así mismo, también existe un incremento del deterioro genético de las poblaciones autóctonas de cacho y trucha por la incorporación de stocks poblacionales con genotipos exóticos o provenientes de otras cuencas hidrográficas, especialmente en el primer caso, donde las poblaciones actuales en gran parte pueden ser fruto de esta circunstancia.

Los tramos más relevantes para la conservación de la ictiofauna autóctona a nivel regional (ejes de los ríos Mundo y Segura) están incluidos prácticamente en su totalidad dentro de la red de áreas protegidas de Castilla-La Mancha (Red Natura 2000 y ENPs).

3.4.4. Demarcación Hidrográfica del Júcar

Existe una severa fragmentación y regresión poblacional de varios peces autóctonos, siendo destacable la pérdida de riqueza existente en el tramo medio-inferior de río Arquillo. La recuperación funcional de este y otros tramos de la cuenca como corredores fluviales debe ser un objetivo prioritario para la conservación de la ictiofauna autóctona, debiendo garantizarse en todos los casos adecuados caudales ecológicos y, en su caso, una buena calidad de las aguas.

Los principales enclaves para la conservación de la ictiofauna autóctona se encuentran en la cuenca alta del Júcar hasta el embalse de Alarcón, eje del río Cabriel, río Turia y cabecera del río Arquillo.

El estado de conservación de todas las especies de peces autóctonos es desfavorable por la existencia de múltiples y relevantes impactos negativos sinérgicos, entre los que se encuentran la contaminación (difusa y local), la sobreexplotación y alteración del régimen hídrico natural (trasvases, canalizaciones, infraestructuras hidráulicas), la presencia de especies exóticas invasoras (especialmente ictiofauna alóctona y cangrejo rojo), la pérdida de conectividad fluvial, el deterioro de las formaciones vegetales acuáticas y riparias, la prevalencia de parásitos y enfermedades, la pesca recreativa y el cambio climático. Estos impactos limitan considerablemente la disponibilidad y calidad de hábitat a la vez que afectan directamente a las especies. Cuatro especies mantienen un estado de conservación desfavorable-inadecuado y siete desfavorable-malo. El mantenimiento de caudales ecológicos adaptados a las necesidades de las especies y sus hábitats, la reducción de la contaminación, el control o erradicación de las especies exóticas invasoras, el deslinde del dominio público hidráulico y la mejora de las características hidromorfológicas, ecológicas y de continuidad fluvial se establecen como los principales pilares para mejorar o revertir la situación desfavorable de la ictiofauna autóctona en la demarcación.

Cabe resaltar como especies de gran interés para la conservación de la biodiversidad, por su carácter endémico y elevado grado de amenaza la loina (*Parachondrostoma arrigonis*) o la madrilla (*Parachondrostoma turiense*). Así mismo, por la pérdida de amplitud geográfica y la tendencia general de su estado de conservación también pueden destacarse especies como la anguila (*Anguilla anguilla*), la colmilleja (*Cobitis paludica*), el fraile (*Salaria fluviatilis*) o el cacho valenciano (*Squalius valentinus*).

La Red de áreas protegidas de Castilla-La Mancha (Red Natura 2000 y ENPs) acoge una destacada superficie de tramos con elevada riqueza ictiológica en la demarcación hidrográfica del Júcar, como la cuenca alta del Júcar, río Cabriel y cabecera del río Arquillo, aunque en la mayor parte de los casos existen tramos relevantes no incluidos en la Red que deberían ser incorporados dentro de alguna figura de protección (ENPs, Red Natura 2000 y reservas naturales fluviales de la demarcación hidrográfica).

3.4.5. Demarcación Hidrográfica del Guadalquivir

Existe una destacable pérdida de riqueza en toda la demarcación, especialmente en la subcuenca del Jándula, donde confluyen varios factores negativos (elevada contaminación fluvial, presencia de grandes embalses en tramos de cabecera, inversiones y desequilibrios del régimen hídrico, etc.) que perjudican a las especies autóctonas y favorecen el asentamiento y la expansión de las alóctonas. La recuperación funcional de este y otros tramos de la cuenca como eficaces corredores fluviales debe ser un objetivo de conservación prioritario.

Los principales enclaves para la conservación de la ictiofauna autóctona en el territorio de Castilla-La Mancha se encuentran en el río Robledillo y las subcuencas del río Yeguas y Guadalmena.

El estado de conservación de todas las especies de peces autóctonos es desfavorable por la existencia de múltiples y relevantes impactos negativos sinérgicos, entre los que se encuentran la contaminación (difusa y local), la sobreexplotación y alteración del

régimen hídrico natural (canalizaciones, infraestructuras hidráulicas, inversión de los caudales estacionales naturales), la presencia de especies exóticas invasoras (especialmente ictiofauna alóctona), la pérdida de conectividad fluvial, el deterioro de las formaciones vegetales acuáticas y riparias, la prevalencia de parásitos y enfermedades, la pesca recreativa y el cambio climático. Estos impactos limitan considerablemente la disponibilidad y calidad de hábitat a la vez que afectan directamente a las especies. Una especie mantiene un estado de conservación desfavorable-inadecuado y ocho desfavorable-malo. El mantenimiento de adecuados caudales ecológicos (adaptados a las necesidades de las especies, sus hábitats y la temporalidad natural del clima mediterráneo), la reducción de la contaminación, el control o erradicación de las especies exóticas invasoras, el deslinde del dominio público hidráulico y la mejora de las características hidromorfológicas, ecológicas y de continuidad fluvial se establecen como los principales pilares para mejorar o revertir la situación desfavorable de la ictiofauna autóctona en la demarcación.

Cabe resaltar como especies de conservación prioritaria, por su carácter endémico y elevado grado de amenaza, la pardilla oretana (*Iberochondrostoma oretanum*) y la bogardilla (*Iberocypris palaciosi*), aunque esta última parece haberse extinguido. Así mismo, por la pérdida de amplitud geográfica y la tendencia general de su estado de conservación también deben considerarse prioritarias el resto de especies autóctonas excepto el barbo gitano (*Luciobarbus sclateri*).

La Red de áreas protegidas de Castilla-La Mancha (Red Natura 2000 y ENPs) acoge prácticamente todos los tramos fluviales de elevada riqueza ictiológica, excepto algunos enclaves concretos de la subcuenca del Guadalmena (cabecera y entorno de la confluencia del río Salobre).

3.5. Análisis de alteraciones hidromorfológica

Los distintos tipos de barreras, tanto funcionales como estructurales dispuestas a lo largo de los diferentes tramos de los ríos, constituyen el principal factor perturbador de la hidromorfología del sistema acuático.

Para valorar cualitativamente este aspecto, se ha considerado la información correspondiente del último informe reportado a la Comisión Europea sobre el seguimiento de los planes hidrológicos de segundo ciclo de planificación, del que se extraen los porcentajes de longitud de las masas de agua superficiales de Castilla-La Mancha por tipología de alteración hidromorfológica y por Demarcación Hidrográfica.

En el informe se clasifican las alteraciones hidromorfológicas en los siguientes grupos:

- a. Grupo 1: Alteraciones físicas del cauce: lecho, ribera y márgenes.
- b. Grupo 2: Presas, azudes y diques.
- c. Grupo 3: Régimen hidrológico.

	ALTERACIONES HIDROMORFOLÓGICAS					
Demarcación hidrográfica	Alteración física del cauce /lecho/ribera/márgenes		Presas, azudes y diques		Régimen hidrológico	
	NO	SI	NO	SI	NO	SI
Ebro	100%	0%	100%	0%	100%	0%
Guadalquivir	100%	0%	16%	84%	100%	0%
Guadiana	44,7%	55,3%	56,9%	43,1%	50%	50%

	ALTERACIONES HIDROMORFOLÓGICAS					
Demarcación hidrográfica	Alteración física del cauce /lecho/ribera/márgenes		Presas, azudes y diques		Régimen hidrológico	
	NO	SI	NO	SI	NO	SI
Júcar	65,3%	34,7%	26,4%	73,6%	44,5%	55,5%
Segura	88,7%	11,3%	78,2%	21,8%	55,6%	44,4%
Tajo	100%	0%	59,5%	40,5%	83,3%	16,7%
Total CLM	76,0%	24,0%	51,1%	48,9%	65,6%	34,4%

Tabla 1. Porcentaje de longitud de las masas de agua superficiales de Castilla-La Mancha por tipología de alteración hidromorfológica.

Para cada uno de los grupos, se ha calculado el porcentaje de la longitud total de las masas de agua que presentan o no la alteración correspondiente. Se concluye que, para el conjunto de la Región, las alteraciones por presas, azudes y diques constituyen el grupo de alteraciones más significativo, afectando a casi un 50 % de los tramos presentes en la región, seguido de las alteraciones en el régimen hidrológico (34,4 %) y, por último, las alteraciones físicas de los cauces, lechos, riberas o márgenes (24 %).

La representación gráfica de la longitud de las masas de agua superficiales con alteraciones hidromorfológicas (considerando que una masa de agua presenta una alteración hidromorfológica si al menos mantiene una de las tres tipologías identificadas) quedaría de la siguiente manera:

% longitud a partir de las masas de agua 100% 80% 60% 40% 20% 0% Ebro Guadalq. Guadiana Júcar Segura Tajo Total CLM Sin alteracion 100% 16% 20,3% 6,9% 37,5% 59,5% 34,1% Con alteracion 0% 84% 79.7% 93,1% 62.5% 40.5% 65.9%

Alteraciones hidromorfológicas

Tabla 2. Porcentaje de longitud de las masas de agua superficiales de Castilla-La Mancha con alteraciones hidromorfológicas.

Nota: Se considera que una masa de agua presenta una alteración hidromorfológica si al menos mantiene una de las tres tipologías identificadas (física del cauce, presas o régimen hidrológico).

Según estos datos, la demarcación del Júcar presenta un mayor grado de alteración hidromorfológica general en la región, seguida de las demarcaciones del Guadalquivir, Guadiana, Segura y Tajo, siendo casi despreciable el grado de alteración en la demarcación del Ebro, aunque para este último caso es preciso matizar que su representación a nivel regional es muy reducida (en cuanto a la longitud total de los tramos que aporta al conjunto de la región).

La Figura 3 refleja la distribución regional de los tramos con alteraciones hidromorfológicas, en la que se observa gráficamente como una buena proporción de las masas mantiene al menos una de las tres categorías tratadas: alteración del cauce, presas o régimen hidrológico y en verde los tramos sin alteraciones hidromorfológicas y que la mayoría se encuentran bien en los tramos de cabecera o los afluentes de los ejes principales.

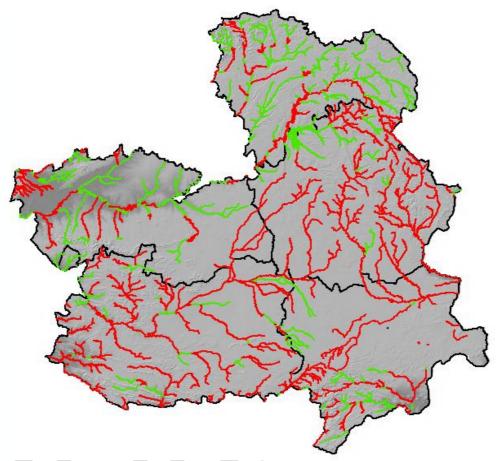


Figura 3. Distribución de tramos con alteraciones hidromorfológicas.

En rojo: tramos que presentan al menos una de las 3 categorías tratadas: alteración del cauce, presas o régimen hidrológico. En verde: tramos sin alteraciones hidromorfológicas.

3.5.1. Conclusiones

A falta de un análisis de la conectividad estructural y funcional de los ambientes fluviales, como conclusión del análisis cualitativo preliminar de la situación actual del medio fluvial en Catilla-La Mancha, se puede deducir la necesidad de abordar la mejora de la conectividad de los ambientes fluviales con el objetivo de afianzar su papel como corredores ecológicos para las especies vinculadas al agua.

En este sentido, es prioritario fijar la atención en medidas que integren soluciones a las alteraciones detectadas tanto en la calidad del agua como en hidromorfología, de manera que las especies que desarrollen sus ciclos vitales en el medio fluvial vean favorecida su posibilidad de acceso a hábitats de mayor extensión y calidad.

El desarrollo de este estudio deberá contemplar todas las dimensiones del medio: conectividad longitudinal, transversal y vertical y ser integrado posteriormente en las futuras estrategias de conectividad ecológica, restauración e infra estructura verde.

3.6. Situación actual de la conectividad fluvial

La conectividad fluvial abarca cuatro dimensiones: longitudinal (cauce fluvial), lateral (llanuras de inundación), vertical (aguas subterráneas y atmósfera) y temporal (intermitencia) y puede verse comprometida por alguno de los siguientes motivos:

- 1. Por variaciones de la infraestructura física en el cauce del río, a lo largo de las zonas ribereñas o en las llanuras de inundación adyacentes;
- 2. Por alteraciones hidrológicas del caudal del río debido a la extracción o regulación del agua; y
- 3. Por cambios en la calidad del agua que conducen a efectos de barrera ecológica causados por la contaminación o alteraciones en la temperatura del agua.

En el trabajo elaborado por Grill et al. 2019 se cartografió la conectividad de los ríos del mundo teniendo en cuenta las dimensiones mencionadas, ponderando la importancia de cada una de las mismas.

El 80% de los tramos fluviales que discurren en el territorio de Castilla-La Mancha poseen un buen estado de conectividad, en base al Índice de Estado de Conectividad (CSI) de acuerdo con el criterio seguido en el artículo anterior. Sin embargo, son los ejes principales de las cuencas hidrográficas los que se encuentran más perturbados, y, consecuentemente, con una mayor alteración de su conectividad.

La baja conectividad en estos cursos tiene mayor relevancia que si se tratara de arroyos puntuales, ya que dificultan el intercambio genético y la dispersión de especies entre diferentes afluentes que están conectados únicamente por los cursos principales, lo genera un efecto embudo al ser el nexo de unión de los elementos "secundarios".

Los tramos que presentan mayores impactos sobre la conectividad ecológica coinciden principalmente con los grandes ejes fluviales, como el río Tajo y sus afluentes más importantes: el río Jarama, Henares, Guadarrama, etc.; el río Júcar y el Cabriel; el río Segura y el Mundo; el río Guadiana, el río Gigüela y el río Bullaque; el río Guadalquivir y otros de Sierra Morena (Figura 4).

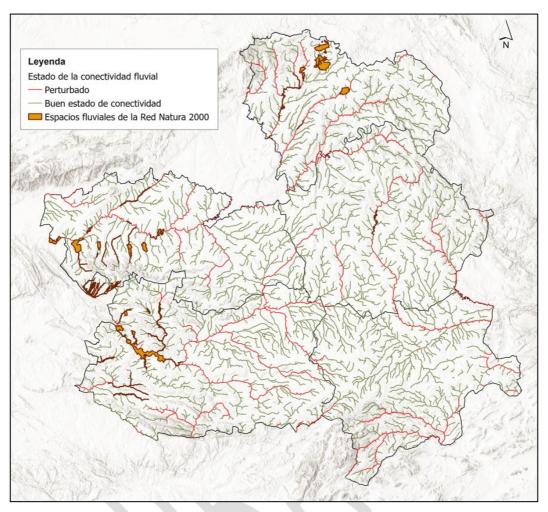


Figura 4. Análisis territorial del estado de la conectividad fluvial según el CSI

En rojo: tramos con mayor afección de las presiones sobre la conectividad ecológica. En verde: tramos fluviales en buen estado de la conectividad ecológica. En naranja: espacios de la Red Natura 2000 muy relevantes desde el punto de vista fluvial. Fuente: Grill et al (2019).

No existe ninguna conexión entre los espacios fluviales de la Red Natura 2000 considerados que no tenga algún tramo fluvial perturbado que reduzca la conectividad ecológica fluvial entre los diferentes ambientes. Los espacios que mantienen una mejor conectividad ecológica son la ZEC Valle del río Cañamares (ES4240009) y la ZEC-ZEPA Valle y salinas del Salado (ES0000165).

A pesar de que se clasifica únicamente una quinta parte como perturbado, todos los tramos de la región están influenciados por una serie de presiones, el consumo de agua es la que tiene mayor peso en la región, habiendo sido clasificada como la principal presión del 52% de los tramos (Figura 5).

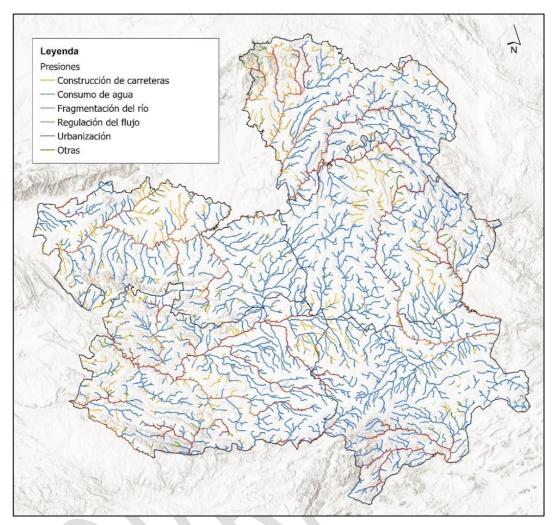


Figura 5. Distribución de las presiones principales sobre la conectividad fluvial de los tramos.

En amarillo: densidad de construcción de carreteras. En azul: consumo de agua. En naranja: fragmentación del río. En rojo: regulación del flujo. En gris: urbanización. En verde: otras amenazas. Fuente: Grill et al (2019).

Se puede concluir que los cursos fluviales más importantes fundamentalmente presentan problemas de fragmentación y regulación.

3.7. Recomendaciones de gestión para la mejora de la conectividad fluvial

Los cursos fluviales, junto con los humedales, representan un elemento prioritario para la conectividad y funcionalidad ecológica de la Red Natura 2000 por lo que, con carácter general, el Dominio Público Hidráulico en Castilla-La Mancha deberá tener la consideración de **corredor ecológico** en consonancia a lo establecido en la Estrategia estatal de infraestructura verde y de la conectividad y restauración ecológicas.

Con el objetivo de mejorar las condiciones de conectividad de los sistemas fluviales, clave para garantizar su papel como corredores ecológicos, se establecen las siguientes directrices encaminadas a mejorar el estado actual de los tres parámetros considerados para valorar la conectividad en el medio acuático:

 Promover medidas orientadas hacia el incremento de la permeabilidad de las presas y embalses (previa evaluación de que estas medidas no faciliten la dispersión de peces exóticos) tales como:

- a. la eliminación del obstáculo si la concesión ya no está vigente o el uso inicial ha desaparecido.
- b. la instalación de pasos para peces.
- c. la instalación de dispositivos que impidan el acceso de los peces a las tomas de agua, canales de derivación y entrada a turbinas de centrales eléctricas.
- 2. Abordar la restauración paulatina de las riberas fluviales y su protección en aquellas zonas bien conservadas.
- 3. Suprimir las canalizaciones, que destruyen completamente el hábitat de las especies.
- 4. Controlar la extracción de sustrato y vegetación acuática de los fondos, especialmente en zonas de freza y desarrollo de juveniles de peces.
- 5. Incidir en el control de los estudios de impacto ambiental de proyectos que impliquen la alteración de los componentes estructurales de los cauces, así como en el establecimiento de medidas correctoras.
- 6. Adecuar las concesiones antiguas y nuevas a los caudales circulantes actuales y bajo distintos escenarios de cambio climático. Asimismo, garantizar que el caudal circulante sea compatible con los requerimientos biológicos y ecológicos de todos los estados de desarrollo de las especies.
- 7. Abordar proyectos de restauración del hábitat dirigidos a aminorar la afección de las especies alóctonas (García de Jalón, 2008), contemplando acciones como las siguientes:
 - a. Mejorar la conectividad transversal mediante el planteamiento de riberas que se inundan.
 - b. Mejorar la calidad de las aguas.
 - c. Implementar tramos que actúen como refugio para las especies autóctonas que funciones como centros de dispersión para estas especies.
- 8. Priorizar la restauración de la vegetación de ribera en los tramos de conectores que discurren en torno a la red fluvial, buscando reforzar la anchura y la continuidad espacial de ésta a lo largo de las riberas.
- 9. Restringir el uso de biocidas en los bordes de los cursos fluviales.
- 10. Restringir de quema de zarzales, carrizales, etc.
- 11. Limitar las actividades con gran consumo de agua, sobre todo en época estival.
- 12. Evitar las mal llamadas "limpiezas de cauce" en acequias y regueros, consistentes en dragados y en eliminación de la vegetación helófita, porque suponen la destrucción del hábitat de los macroinvertebrados bentónicos y de numerosa fauna que se refugia, alimenta y reproduce en la vegetación de ribera, aunque sea un carrizal.
- 13. Condicionar estas actuaciones de "limpiezas" a la realización simultánea de acciones de recuperación de la ribera.
- 14. Fomentar que no se produzcan vertidos directos a los cursos de agua o a las cuencas endorreicas de aguas sin que estos sean depurados antes correctamente.

4. CONECTIVIDAD ECOLÓGICA EN LOS HUMEDALES

Los humedales, independientemente de su tamaño y disponibilidad de agua, constituyen importantes puntos de concentración de biodiversidad.

A pesar de esto, una de las principales luchas que la sociedad ha debido lidiar en las últimas décadas ha sido la de compensar la imagen negativa que históricamente se ha tenido de estos lugares, vinculada principalmente a su escaso interés económico (lo que los ha llevado a convertirse en vertederos de residuos de todo tipo) y a su identificación con focos que propiciaban la propagación de determinadas enfermedades.

Como consecuencia, muchos de estos espacios han desaparecido o, cuando no ha sido así, el estado natural ha sido tan alterado que en algunos de los casos las labores de recuperación requieren esfuerzos adicionales de concienciación y regulación de usos por parte de las autoridades competentes.

Si embargo, estos espacios son el hábitat de numerosas especies de aves que los utilizan como lugares estratégicos de parada y descanso durante sus migraciones o puntos de alimentación, nidificación y cría, tanto para las especies de paso por nuestra península, como para las residentes. Otros grupos de interés vinculados a estos medios son numerosos invertebrados acuáticos y algunos grupos de vertebrados como los anfibios, cuya supervivencia se ve estrechamente condicionada a la existencia de estos espacios, entre muchos otros.

Además, desde el punto de vista de su papel en la conectividad del medio, algunas de las especies que utilizan los humedales en cualquiera de sus variedades (temporales o permanentes) presentan capacidades de dispersión muy limitadas, por lo que el mantenimiento de una densidad importante de estos ambientes es imprescindible para la consecución de sus objetivos reproductores o de dispersión. Así, mientras las aves acuáticas poseen una alta capacidad de dispersión (lo que les permite alcanzar zonas adecuadas para su supervivencia, aunque se encuentren muy alejadas unas de otras), para otros organismos como los invertebrados, las estrategias de supervivencia pasan por la puesta en práctica de estrategias de dispersión que requieren de una mayor densidad de hábitat útil.

Para todos estos grupos faunísticos es fundamental contar también con vías que permitan el desplazamiento entre los núcleos fundamentales que constituyen estos humedales (corredores ecológicos). Es decir, garantizar la continuidad de hábitat adecuado para la dispersión de las especies dentro de la matriz territorial, lo que implica tener en cuenta los requerimientos de las especies objetivo y de las especies que intervienen como agentes dispersantes de sus huevos y estructuras de resistencia.

4.1. Humedales de Castilla-La Mancha

Los estudios realizados en la región sobre humedales reflejan la existencia de al menos 400 humedales de tipologías muy diversas: lagunas de origen volcánico (Campo de Calatrava), lagunas asociadas a sistemas fluviales sobre llanuras de inundación (Laguna del Taray y Tablas de Daimiel), lagunas asociadas a formaciones de origen kárstico (Lagunas de Ruidera), humedales estacionales salinos y salinas interiores, etc. Muchos de estos espacios se encuentran protegidos. De hecho, formando parte de la Red Natura 2000 se encuentran los siguientes:

- ES4220019: Bonales de la comarca de Los Montes del Guadiana.
- ES0000438: Carrizales y sotos del Jarama y Tajo.
- ES4230008: Complejo lagunar de Ballesteros y valle del río Moscas.
- ES4250011: Complejo lagunar de La Jara.
- ES4250008: Estepas salinas de Toledo.
- ES4250010: Humedales de La Mancha.
- ES0000161: Laguna de El Hito.
- ES4210005: Laguna de Los Ojos de Villaverde.
- ES4210006: Laguna del Arquillo.
- ES4220020: Lagunas de Alcoba y Horcajo de Los Montes.
- ES4240005: Lagunas de Puebla de Beleña.
- ES4210017: Lagunas de Ruidera.
- ES4210004: Lagunas saladas de Pétrola y Salobrejo, y complejo lagunar de Corral-Rubio.
- ES4220005: Lagunas volcánicas del Campo de Calatrava.
- ES4240023: Lagunas y parameras del Señorío de Molina.
- ES0000013: Tablas de Daimiel.

En cuanto a instrumentos de planificación para su conservación, Castilla-La Mancha cuenta desde 2002 con un Plan de Conservación de Humedales, cuyo objetivo fundamental es el desarrollo y la conservación de los valores naturales.

4.2. Evaluación de la conectividad ecológica de los humedales de Castilla-La Mancha

El estudio de la conectividad ecológica de los humedales constituye una de las herramientas necesarias para completar el proceso de establecimiento de corredores ecológicos para las especies ligadas a estos medios.

Para la elaboración de dicho estudio se ha tenido en cuenta la herpetofauna acuática de interés en Castilla-La Mancha, en concreto las especies que aparecen en el siguiente listado, sobre las cuales se llevó a cabo una revisión bibliográfica para utilizar un valor medio de dispersión, habiéndose extrapolado 500 metros de toda la información disponible:

Alytes spp.: 500 m.

• Triturus spp.: 400-800 m.

• Pelobates fuscus: 500 m.

• Bufo spinosus: 254-1379 m.

• Otras estudiadas en conjunto: 500-1000 m.

La bibliografía y metodología utilizada puede consultarse en los informes técnicos de los trabajos desarrollados en el contexto del diagnóstico de la situación actual de la conectividad ecológica para la elaboración de la Estrategia Regional de Infraestructura Verde, Conectividad y Restauración Ecológicas en Castilla-La Mancha disponible en la página oficial de Castilla-La Mancha (https://www.castillalamancha.es/node/352484).

Las áreas núcleo que se tuvieron en cuenta en el análisis fueron todos los espacios de la Red Natura 2000 que se mencionaron en el apartado anterior, así como, una selección de 575 humedales del catálogo regional que retroalimentan y favorecen el intercambio genético entre los diferentes nodos de la Red Natura 2000.

El planteamiento ha consistido en aplicar una metodología similar a la desarrollada para la misma cuestión en el ámbito forestal, descrita anteriormente, con el doble objetivo de:

- a. Identificar el grado de idoneidad del territorio como hábitat para estas especies.
- b. Deducir la resistencia que el territorio ofrece a la dispersión de estas especies, como instrumento para identificar el grado de conexión que existe entre las distintas áreas núcleo a través de la matriz territorial.

Como paso previo ha sido preciso caracterizar los distintos usos que se llevan a cabo en el territorio, y para esto se ha utilizado como base cartográfica la cartografía del SIOSE (2014).

A partir de esta información espacial, se ha elaborado una matriz territorial que define tanto la **idoneidad** del medio al uso por parte de estas especies para el desarrollo de las distintas fases de sus ciclos vitales como la **resistencia** al desplazamiento y utilización del mismo. La matriz de resistencia al uso por parte de estas especies constituye la base sobre la que aplicar los algoritmos necesarios para determinar las posibles vías de dispersión en base a la idoneidad del medio para permitir sus desplazamientos y, por lo tanto, para valorar la conectividad que existe entre los distintos núcleos.

Para la asignación de valores de resistencia a cada uno de los tipos de usos reportados por el SIOSE y la incorporación posterior de otras zonas favorables o desfavorables concretas, como son las zonas riparias, tramos fluviales, zonas húmedas y humedales, y carreteras.

Una vez definida la matriz de resistencia del medio, se han utilizado las herramientas SIG para determinar rutas que favorezcan y establezcan la conexión entre los distintos núcleos que conforman los espacios de la Red Natura 2000 y los humedales próximos a estos, introduciendo una capacidad de dispersión de 500 metros.

Los resultados obtenidos constituyen una primera aproximación en cuanto al análisis de la conectividad ecológica entre estos espacios de la Red Natura 2000 para estas especies (Figura 6). Una aproximación más precisa, a nivel de espacio o de espacios concretos, facilitará la focalización de los esfuerzos de conservación y restauración en aquellos aspectos que resulten más relevantes, priorizando el establecimiento de las medidas más adecuadas para cada caso.

El resultado del modelo de conectividad refleja la menor resistencia del territorio para el paso de las especies estudiadas, estando ligadas a ambientes acuáticos, como cursos fluviales u otras zonas influenciadas por la acumulación de agua con cierta frecuencia.

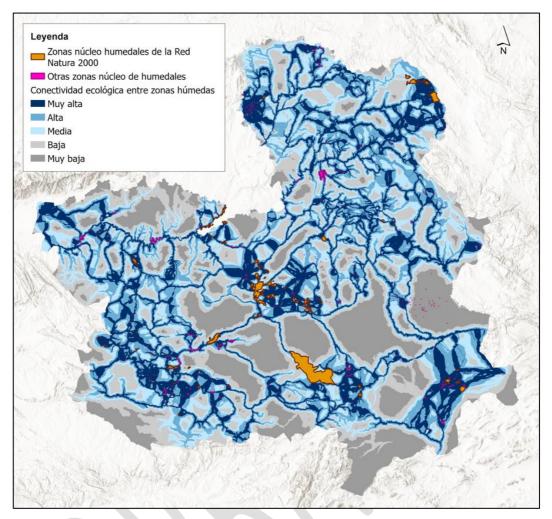


Figura 6. Conectividad ecológica fluvial entre espacios de la Red Natura 2000 y los humedales del catálogo regional seleccionados reclasificada en cinco categorías por cuantiles.

Al igual que WWF España en el trabajo de "Autopistas Salvajes" identificó los puntos críticos, sería interesante que se desarrollara un estudio al detalle que permita determinar cuáles son los puntos críticos de los corredores ecológicos acuáticos que facilitan la conexión entre los diferentes humedales para poder encaminar actuaciones prioritarias en dichos puntos.

Por tanto, los espacios más frágiles son aquellos que en el caso de que se degrade la única franja que sirve de corredor ecológico queden aislados del resto de ambientes de humedales porque las posibilidades de dispersión sean inexistentes.

El caso contario son los nodos que destacan por la confluencia de corredores que conectan un área núcleo con múltiples nodos. El ejemplo más significativo está en la Mancha Húmeda, en el que conectan los corredores de las campiñas de la meseta sur, los de los Montes de Toledo, la depresión endorreica del Cigüela y el Záncara, las tierras manchegas de Belmonte-La Alberca, etc. Todo esto puede permitir que exista intercambio genético entre los humedales de la Reserva de la Biosfera de la Mancha Húmeda y otros humedales del entorno castellanomanchego.

4.3. Recomendaciones de gestión para la mejora de la conectividad de los humedales de Castilla-La Mancha

Las siguientes recomendaciones que deberán ser tenidas en cuenta en el establecimiento de medidas de mejora de la conectividad para estos espacios:

- a. Contemplar la mejora de la calidad del hábitat en los humedales, favoreciendo las actuaciones de mejora de teselas que favorezcan la conectividad entre humedales que se encuentren más próximos.
- b. Evitar la fragmentación del hábitat por cambios en los usos del suelo.
- c. Emprender acciones para la recuperación y acondicionamiento de fuentes y abrevaderos.
- d. Valorar la creación de nuevos humedales.
- e. Vigilar la calidad de las aguas de charcas y humedales para evitar su degradación.
- f. En cuanto a anfibios, garantizar la presencia de un conjunto suficiente de humedales reproductores funcionalmente interconectados y la existencia de biotopos de estancia temporal entre los humedales.
- g. Promover el deslinde del dominio público hidráulico en los humedales.
- h. Restaurar acequias y pequeños cauces que conecten humedales próximos.
- Fomentar que no se produzcan vertidos directos a los cursos de agua o a las cuencas endorreicas de aguas sin que estos sean depurados antes correctamente.

5. CONECTIVIDAD ECOLÓGICA EN ECOSISTEMAS AGRARIOS

Los ecosistemas vinculados al medio agrario constituyen ambientes de origen antrópico cuya principal finalidad es la producción de alimentos y otros materiales de origen biológico de gran importancia para el mantenimiento de nuestra sociedad. Se trata de los ecosistemas más extensos de nuestro país, sustentando poblaciones de numerosas especies de gran interés y singularidad por su escasa presencia en el ámbito europeo, como las aves esteparias, de las que el territorio español cuenta con representaciones muy relevantes en el contexto internacional.

En el ámbito regional, la superficie agraria alcanza más del 46 %, lo que supone casi la mitad de la superficie del territorio. Esto implica que el mantenimiento de un buen número de especies vinculadas a este medio depende en gran medida de que el medio agrario, y el sector económico al que está estrechamente vinculado, se desarrollen de manera sostenible, no perdiendo de vista la importancia de los servicios ecosistémicos que este medio proporciona. Sin embargo, los agroecosistemas no están constituidos solo por campos de cultivo, sino también por prados y pastizales. lo que supone un mosaico paisajístico que es utilizado por las distintas especies asociadas a este medio para desarrollar varias etapas de su ciclo biológico.

El análisis de la conectividad en el ámbito agrario contribuye, además, a aclarar la forma en que este medio puede contribuir a la construcción de una infraestructura verde efectiva, de gran importancia para la integración de la matriz territorial en las estrategias de conservación de hábitats y especies.

Desde el punto de vista de su estudio, Gómez Sal *et al.* (2011)¹ propusieron las siguientes categorías de clasificación de los distintos tipos de agroecosistemas:

- I. Sistemas con elementos leñosos dominantes.
 - a. Silvopastorales.
 - b. Cultivos leñosos especializados (olivares, viñedos, frutales).
- II. Pastizales.
 - a. Red de vías pecuarias y pastizales asociados.
 - b. Matorrales, monte bajo pastado, pastizal mediterráneo.
 - c. Pastizales de montaña.
- III. Cultivos herbáceos monoespecíficos.
 - a. Secano extensivo. Estepas cerealistas.
 - b. Regadío extensivo.
- IV. Policultivo.
 - a. Huerta tradicional.
 - b. Mosaico mediterráneo.
 - c. Policultivo atlántico. Paisaje reticulado.
- V. Agricultura industrial.

¹ Gómez Sal, A. 2012. Agroecosistemas: opciones y conflictos en el suministro de servicios clave. Ambienta 98: 18-30

- a. Cultivos bajo plástico.
- b. Regadío intensivo industrial.
- c. Praderas artificiales.

Muchos de estos ecosistemas agrarios muestran un interés de conservación incuestionable por sus valores ambientales, pero también por su relevancia paisajística y cultural. De hecho, la Directiva Hábitat incluye a estos ecosistemas entre las distintas categorías de hábitats susceptibles de ser considerados en la definición de los espacios de la Red Natura 2000.

5.1. Espacios de la red natura 2000 vinculados a la conservación de las aves esteparias asociadas a ecosistemas agroesteparios

Formando parte del medio agrario, destacan en Castilla-La Mancha los espacios ZEPA o ZEC-ZEPA cuyo objeto de conservación son principalmente las aves vinculadas a las estepas agrarias.

Este grupo de aves está formado por especies como la avutarda (Otis tarda), el sisón (Tetrax tetrax), el cernícalo primilla (Falco naumanni), la ganga, (Pterocles alchata), la ortega (Pterocles orientalis), el aguilucho cenizo (Circus cyaneus), el aguilucho pálido (Circus pygargus), el alcaraván (Burhinus oedicnemus), la grulla común (Grus grus), la calandria (Melanocorypha calandra), la bisbita campestre (Anthus campestris), la cogujada montesina (Galerida theklae), la terrera común (Calandrella brachydactyla) o alondra ricotí (Chersophilus duponti). Todas ellas se encuentran protegidas tanto por la Directiva Aves como por la normativa nacional y regional.

Los espacios de la Red Natura 2000 cuyo principal objetivo es la conservación de las aves esteparias son los siguientes:

- ES0000153: Áreas esteparias del este de Albacete.
- ES0000154: Zona esteparia de El Bonillo.
- ES0000157: Campo de Calatrava.
- ES0000158: Áreas esteparias del Campo de Montiel.
- ES0000167: Estepas cerealistas de La Campiña.
- ES0000168: Llanuras de Oropesa, Lagartera y Calera y Chozas.
- ES0000170: Área esteparia de la Mancha Norte.
- ES0000390: San Clemente.
- ES0000435: Área esteparia de la margen derecha del río Guadarrama.
- ES4240017: Parameras de Maranchón, hoz del Mesa y Aragoncillo.
- ES4240023: Lagunas y Parameras del Señorío de Molina.

5.2. Evaluación de la conectividad ecológica agroesteparia en Castilla-La Mancha

Como un primer paso en el estudio detallado de la conectividad en el medio agrario, se ha comenzado por abordar la conectividad del medio para las aves esteparias.

El planteamiento ha consistido en aplicar una metodología similar a la desarrollada para la misma cuestión en el ámbito forestal, descrita anteriormente, con el doble objetivo de:

- a. Identificar el grado de idoneidad del territorio como hábitat para estas especies.
- b. Deducir la resistencia que el territorio ofrece a la dispersión de estas especies, como instrumento para identificar el grado de conexión que existe entre los

distintos espacios ZEC-ZEPA o ZEPA de esteparias y otras áreas de interés agroestepario a través de la matriz territorial.

Como paso previo ha sido preciso caracterizar los distintos usos que se llevan a cabo en el territorio, y para esto se ha utilizado como base cartográfica de ámbito regional la cartografía SIGPAC (2022).

A partir de esta información espacial, se ha elaborado una matriz territorial que define tanto la **idoneidad** del medio al uso por parte de estas especies para el desarrollo de las distintas fases de sus ciclos vitales como la **resistencia** al desplazamiento y utilización del mismo. La matriz de resistencia al uso por parte de estas especies constituye la base sobre la que aplicar los algoritmos necesarios para determinar las posibles vías de dispersión en base a la idoneidad del medio para permitir sus desplazamientos y, por lo tanto, para valorar la conectividad que existe entre los distintos núcleos.

Para la asignación de valores de resistencia a cada uno de los tipos de usos reportados por el SIGPAC, se ha tenido en cuenta el hecho de que, a pesar de tratarse de aves con una capacidad y patrón de dispersión característico del grupo faunístico, no se ha obviado que en sus desplazamientos estas aves pueden no recorrer grandes distancias, sino que también ocurren desplazamientos a corta distancia para los que es preciso contar con la presencia de parches de hábitat idóneo con una cierta continuidad y regularidad.

Por otro lado, hay que tener en cuenta que, si bien algunas de estas especies realizan desplazamientos estacionales, por lo general se trata de aves para las que no se ha constatado una preferencia generalizada por el desplazamiento entre núcleos muy alejados.

Con la información relativa a su preferencia de hábitat, y además de considerar los usos reportados por el SIGPAC, para la determinación de la matriz de resistencia se han considerado otros factores como la topografía del terreno (preferencia por zonas llanas o alomadas), y la distancia a infraestructuras de transporte y núcleos de población.

Una vez definida la matriz de resistencia del medio, se han utilizado las herramientas SIG para determinar rutas que favorezcan y establezcan la conexión entre los distintos núcleos que conforman los espacios ZEPA de la Red Natura 2000. Estas conexiones son líneas que constituyen las rutas de menor coste en la conexión entre los núcleos, y, mediante un geoproceso que analiza las múltiples posibilidades de conexiones se obtienen las franjas conectoras de menor coste acumulado acorde a la resistencia del hábitat para las especies consideradas.

La definición de la matriz de resistencia y de idoneidad ofrece una primera visión sobre la conectividad entre los espacios ZEPA en cuestión y otras áreas núcleo de interés agroestepario, que se resume a continuación.

5.2.1. Idoneidad del hábitat

La Figura 7 muestra la distribución a nivel regional de la superficie de hábitat según su idoneidad para las especies de aves esteparias (en gris las zonas menos idóneas, y en naranja las más idóneas para su utilización por estas especies). Se aprecia como las infraestructuras de transporte, y las zonas de influencia de los núcleos de población

considerados para la determinación de la idoneidad del hábitat constituyen un importante elemento de fragmentación territorial.

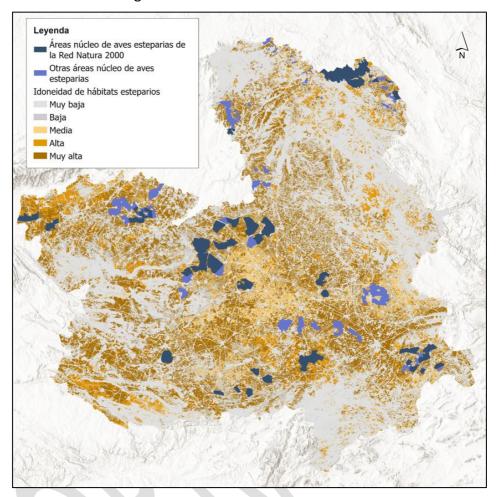


Figura 7. Matriz territorial de idoneidad de hábitats para las especies esteparias consideradas reclasificada por rupturas naturales.

En el contexto regional destacan los siguientes aspectos:

- a. Las zonas idóneas para las especies objetivo se localizan en el interior de la llanura manchega, ocupando todo el centro de la comunidad, y extendiéndose lateralmente hacia el este por el norte de la provincia de Albacete y sur de Cuenca y hacia el oeste por el norte de la provincia de Toledo a través del valle del Tajo, entre la sierra de San Vicente y los Montes de Toledo.
- b. Por su parte, las zonas del norte de la provincia de Toledo, si bien muestran un elevado grado de idoneidad, presentan como principal hándicap una pobre continuidad con el gran núcleo central manchego debido al efecto de la fragmentación del territorio (vías de comunicación y usos del suelo).
- c. Muy destacables por su idoneidad se muestran las zonas localizadas al norte de la provincia de Albacete, en continuidad con las áreas del centro de la región.

5.2.2. Matriz de resistencia y corredores identificados

La Figura 8 refleja las principales vías de conexión entre los distintos núcleos de esteparias en Castilla-La Mancha. La base cartográfica sobre la que se representan corresponde a la matriz de resistencia del territorio al uso por parte de las especies consideradas. De este modo, en gris se representan las áreas que presentan una mayor

resistencia y en naranja las que se muestran más seleccionables por estas especies. En el análisis se ha incluido el área geográfica correspondiente a la Comunidad de Madrid, ya que presenta cierta importancia en la conectividad entre varios de los núcleos considerados para Castilla-La Mancha.

Destaca el interior de la llanura manchega como una zona óptima en cuanto a su baja resistencia al tránsito y utilización del medio por parte de las aves esteparias.

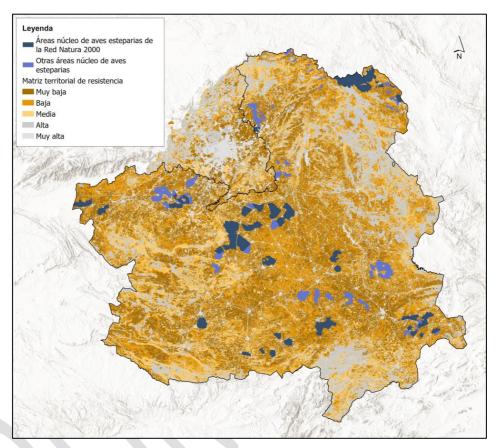


Figura 8. Matriz territorial de resistencia al tránsito y uso por parte de las especies esteparias consideradas reclasificada por cuantiles.

Los corredores identificados discurren por el territorio a través de las áreas que ofrecen menor resistencia, de forma que la red generada garantiza la conectividad entre todas las áreas núcleo.

En algunos casos se aprecia que la conectividad puede verse más comprometida por la resistencia que muestra el territorio al desplazamiento y uso por parte de las especies esteparias. Este es el caso, por ejemplo, de las zonas esteparias de La Campiña, en Guadalajara, prácticamente sin continuidad directa con el resto de espacios regionales de la Red Natura 2000 debido a la fuerte antropización de las zonas circundantes y a la distancia existente hasta otros ambientes esteparios de la Red Natura 2000 (Figura 9). En estos casos, los núcleos destacados de las poblaciones de aves esteparias fuera de la Red Natura 2000 tienen una trascendencia mayor para incrementar la conectividad ecológica.

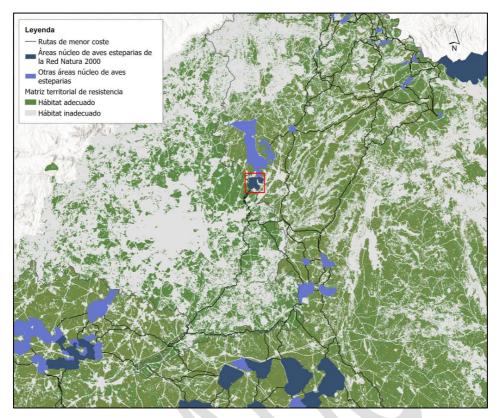


Figura 9. Simplificación de los modelos de resistencia e idoneidad de hábitat centrada en la ZEPA estepas cerealistas de la campiña (Guadalajara).

En verde: zonas con hábitat óptimo. En gris: resto de zona de menor idoneidad o incompatibles. Entre las zonas óptimas discurre la red de rutas de menor coste entre las áreas núcleo.

5.2.3. Modelo de conectividad

Para establecer el modelo de conectividad se ha utilizado la extensión de "Linkage Mapper" diseñada para la identificación de barreras ("Barrier Mapper"), con la que se han identificado las barreras que presenta el hábitat para este grupo de aves en las franjas conectoras de menor coste. El resultado pone de manifiesto cómo la mayoría de estas barreras se corresponden con las vías terrestres de comunicación (carreteras y ferrocarril) y con líneas eléctricas.

Con carácter general se identifican franjas conectoras entre todos los núcleos de interés considerados (Figura 10). La excepción aparece en el Área Esteparia del Este de Albacete, donde no es viable su conexión a través de la Serranía de Cuenca, limitada, entre otros aspectos, por la orografía y los diferentes parques eólicos situados en el entorno de la ZEPA.

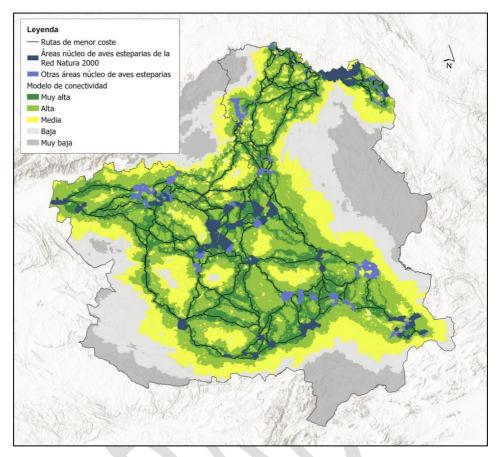


Figura 10. Modelo de conectividad reclasificado por cuantiles. En verde, las franjas con la conectividad más altas; en gris, las franjas en las que la conectividad ecológica posee un valor menor.

5.2.4. Nodos de conectividad

Como nodos de conectividad, desempeñan un papel relevante los distintos núcleos que conforman el área Esteparia de la Mancha Norte y, dentro de estos, el núcleo que se encuentra más separado del conjunto, que al localizarse en una posición central en cuanto a la matriz de idoneidad de hábitat y del resto de espacios de la región, constituye una zona importante a considerar en la conectividad.

Resulta prioritario mantener la integridad estructural y funcional del gran núcleo central que constituye la Llanura Manchega, evitando la acumulación de usos del suelo que no sean compatibles con este grupo de especies.

5.2.5. Factores que afectan a la pérdida de hábitat

Entre los factores que inciden negativamente en la superficie de hábitat disponible para estas especies están: los cambios de usos del suelo, la intensificación de la agricultura y la disminución de la superficie dedicada a la agricultura tradicional, así como la implantación de grandes extensiones de cultivo de regadío (principalmente girasol y maíz).

Otra de las conclusiones que se extraen del análisis de conectividad realizado, es el elevado grado de fragmentación al que se encuentra sometido el hábitat de estas especies. Entre los factores que indicen directamente se encuentran el desarrollo urbanístico y las infraestructuras lineales (carreteras y ferrocarriles, principalmente).

5.3. Principios de conservación y mejora de la conectividad en ecosistemas agrarios

Para la mejora de la conectividad en los ecosistemas agrarios es recomendable tener en cuenta los siguientes aspectos:

- a. Los sistemas agrarios con mayor diversidad de cultivos y usos del suelo se asocian con mayores índices de biodiversidad y, gracias a su estructura espacial y temporal más compleja, favorecen los procesos de conectividad.
- b. Variaciones relativamente pequeñas en los sistemas agrícolas van creando cambios que pueden llegar a ser significativos en la conectividad y en las condiciones del paisaje.
- c. Es necesario considerar la gestión de todo el espacio agrario como un mosaico de hábitats que debe ser administrado para mantener la conectividad de sus partes.
- d. Mejora de la heterogeneidad de la estructura del espacio agrario y disminución de los niveles de intensificación del uso agrario.

5.4. Directrices y recomendaciones para la mejora de la conectividad en ecosistemas agrarios de Castilla-La Mancha

Para mejorar y restaurar la conectividad entre espacios de alto valor ecológico, se deberán contemplar los siguientes aspectos:

- 1. Se analizará la conectividad ecológica a una escala suficiente como para detectar las incidencias en la conectividad presentes a nivel de espacio, así como entre espacios de la Red Natura 2000.
- 2. Se caracterizarán los corredores ecológicos en función de las especies objetivo, las características ecológicas y estructurales de la zona analizada y de las áreas limítrofes y la intensidad efectiva del uso del suelo. Estos corredores o conectores podrán estar constituidos por:
 - Hábitats trampolín: para favorecer los movimientos de las especies tolerantes a las perturbaciones en el hábitat y a las que tengan una mayor movilidad.
 - Hábitats diversos (mosaico): en el caso de procesos ecológicos y especies con las características anteriores, pero en espacios poco alterados.
 - Corredores: para especies que sean poco o nada tolerantes a las perturbaciones en el hábitat y a los procesos ecológicos (con independencia del grado de alteración o intensificación que hay en el paisaje).
- 3. Se abordarán actuaciones que fomenten la biodiversidad, tales como:
 - o Estructuras para mejorar los movimientos de aves y mariposas:
 - Aves: bandas sin cultivar de más de 40 metros.
 - Mariposas: bandas sin cultivar de entre 18 y 170 metros.

- Estructuras para mejorar la abundancia de abejas, ortópteros y diversidad y abundancia de flora: franjas de 6 metros sin cultivar junto a los cultivos agrícolas.
- Estructuras para favorecer el movimiento de las poblaciones de pequeños mamíferos: bandas sin cultivar de entre 7 y 15 metros de anchura, perfectamente junto a cursos de agua.
- Estructura para favorecer la movilidad, poblaciones y diversidad de aves con carácter general:
 - Gestión de setos como corredores de hábitats: combinar setos con cursos de agua, bandas de vegetación, incremento de la anchura y densidad de los setos estrechos (hasta 1 2 metros), crear estructuras varias en cuanto a su disposición y altura, mantenimiento de una buena cobertura a varias alturas.
 - Mantenimiento de una banda de vegetación natural alrededor de las parcelas de cultivo.
- 4. Se abordarán actuaciones de restauración de forma priorizada.
- 5. Se fomentará la implementación de una infraestructura verde lineal utilizando la potencialidad que muestran los elementos lineales presentes en el paisaje tales como lindes de cultivos, bordes de los caminos y las infraestructuras viarias, setos y estructuras divisorias de la propiedad, etc.

Asimismo, como recomendaciones de gestión para la mejora de la conectividad en los sistemas agrarios se propone que:

- a. En cultivos de cereales, tan representativos del territorio de Castilla-La Mancha:
 - o Fomentar los cultivos tradicionales en las zonas pseudoesteparias.
 - Regular del uso de biocidas dentro y fuera de los cultivos, con el fin de conservar los linderos.
- b. En viñedos en espaldera:
 - o Fomentar técnicas que prescindan de la aplicación masiva de biocidas.
- c. En cultivos hortícolas:
 - Aplicar el Código de Buenas Prácticas Agrarias, especialmente las medidas dirigidas a la conservación de la biodiversidad o el uso racional de fertilizantes y fitosanitarios.
 - o Producir, comercializar y utilizar semillas y plantas de vivero.
 - o Regular la quema de rastrojos o restos de cosecha.

0

6. BIBLIOGRAFÍA

CH Ebro. Plan hidrológico de la demarcación Hidrográfica del Ebro 2022-2027. Disponible en: https://www.chebro.es/web/guest/plan-hidrologico-2022-2027

CH Guadalquivir. Plan hidrológico de la demarcación Hidrográfica del Guadalquivir 2022-2027. Disponible en: https://www.chguadalquivir.es/tercer-ciclo-guadalquivir

CH Guadiana. Plan hidrológico de la demarcación Hidrográfica del Guadiana 2022-2027. Disponible en: https://www.chguadiana.es/planificacion/plan-hidrologico-de-la-demarcacion/ciclo-de-planificacion-2022-2027

CH Júcar. Plan hidrológico de la demarcación Hidrográfica del Júcar 2022-2027. Disponible en: https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Paginas/PHC-2022-2027-Plan-Hidrologico-cuenca.aspx

CH Segura. Plan hidrológico de la demarcación Hidrográfica del Segura 2022-2027. Disponible en: https://chsegura.es/es/cuenca/planificacion/planificacion-2022-2027/

CH Tajo. Plan hidrológico de la demarcación Hidrográfica del Tajo 2022-2027. Disponible en: http://www.chtajo.es/LaCuenca/Planes/PlanHidrologico/Planif 2021-2027/Paginas/PHT 2021-2027.aspx

García de Jalón, D. 2008. Especies Alóctonas en Ecosistemas fluviales. En VV.AA. Biodiversidad y Restauración de Ecosistemas Fluviales

Gómez Sal, A. 2012. Agroecosistemas: opciones y conflictos en el suministro de servicios clave. Ambienta 98: 18-30

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M., Meng, J., Mulligan, M., Nilsson, C., Olden, J.D., Opperman, J., Petry, P., Reidy Liermann, C., Saenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R.J.P., Snider, J., Tan, F., Tockner, K., Valdujo, P.H., van Soesbergen, A., & Zarfl, C. (2019). Mapping the world's free-flowing rivers. Nature 569(7755): 215-221.

Iglesias, T., Rodrígez, I. y Rosa, E. 2016. Diagnóstico de coherencia y conectividad de las masas de agua superficiales y subterráneas pertenecientes a la Red Natura 2000, incluidas en el ámbito de actuación del proyecto LIFE MedWetRivers de la cuenca del Duero. Acción A6 del proyecto LIFE11 NAT ES/699 MedWetRivers. Confederación Hidrográfica del Duero.

MITECO. Web Planes Hidrológicos y Programa de Medidas. Disponible en: https://servicio.mapama.gob.es/pphh/queries/resumenSWBEstado

Tockner K., Uehlinger, U. y Robinson, C. T. 2008. Rivers of Europe. Elsevier.

WWF España.2018. Autopistas Salvajes: Propuesta de WWF España para una Red Estratégica de Corredores Ecológicos entre espacios Red Natura 2000.

7. ANEXO CARTOGRÁFICO

A continuación, se incluyen a modo de anexo algunas salidas gráficas que muestran las principales conclusiones obtenidas en los estudios referidos en los epígrafes anteriores sobre la conectividad forestal en la Red Natura 2000 y sobre las áreas núcleo dentro de la Red Natura 2000 y fuera de la red vinculadas a medios agrarios y humedales en Castilla-La Mancha.

Conectividad forestal: Redes de conectividad entre espacios forestales de la Red Natura 2000 en Castilla-La Mancha (obtenido en base al estudio de WWF/ADENA, 2018).

Conectividad de humedales (herpetofauna): Definición de franjas de conectividad entre las áreas núcleo.

Conectividad de aves esteparias (medio agroestepario): Definición de franjas de conectividad entre las áreas núcleo.

